Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
n+4\(⋮\)n
n\(⋮\)
n+4-n\(⋮\)n
4\(⋮\)n
\(\Rightarrow\)n={1;2;4}
Câu 2
3n+7\(⋮\)n
3n\(⋮\)n
3n+7-3n\(⋮\)n
7\(⋮\)n
\(\Rightarrow\)n={1;7}
Câu 3 điền thêm dau đi
\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)
\(4n+3⋮d\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)
Vay ta co dpcm
c,Đặt \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)
\(9n+24⋮d\)
\(3n+4\Rightarrow9n+12⋮d\)
Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)
Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau
Ta có: \(2\left(10x+y\right)-\left(3x+2y\right)=17x\)
Lại có: \(17x⋮17\Rightarrow2\left(10x+y\right)-\left(3x+2y\right)⋮17\)
Vì \(3x+2y⋮17\Rightarrow2\left(10x+y\right)⋮17\)
Mà \(\left(2;17\right)=1\Rightarrow10x+y⋮17\)( đpcm)
+) Nếu n lẻ
=> n + 13 chẵn
=> n(n + 13) chia hết cho 2
+) Nếu n chẵn
=> n(n + 13) chia hết cho 2
Vậy n(n + 13) chia hết cho 2 với mọi số tự nhiên n.
Với n là số chẵn => n chia hết cho 2 => n(n+13) chia hết cho 2
Với n là số lẻ => n+13 chia hết cho 2 => n(n+13) chia hết cho 2
Vậy n(n+13) luôn chia hết cho 2 với mọi số tự nhiên n
Trl:
Ta có : \(5+n⋮n+1\)
\(\Rightarrow4+\left(n+1\right)⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Ta có bảng sau :
n+1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 0 | 1 | 3 | -2 | -3 | -5 |
Hc tốt
\(n+5⋮n+1\)
\(\Rightarrow n+1+4⋮n+1\)
\(\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3\right\}\)
Lời giải:
a.
$2n+7\vdots n+1$
$\Rightarrow 2(n+1)+5\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
b.
$4n-5\vdots 13$
$\Rightarrow 4n-5+13\vdots 13$
$\Rightarrow 4n+8\vdots 13$
$\Rightarrow 4(n+2)\vdots 13\Rightarrow n+2\vdots 13$
$\Rightarrow n=13k-2$ với $k$ là số tự nhiên, $k>0$.