Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .
Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.
\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)
<=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}
Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}
n+2\(\in\)Ư(12)
2n-5\(\in\)Ư(6)
=>n=\(\pm\)1;\(\pm\)3,...
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
\(\frac{15}{n-2}\)là số nguyên khi 15 \(⋮\)n-2\(\Rightarrow\)n-2\(\in\){ 1;3;5;15;-1;-3;-5;-15}
\(\Rightarrow\)n\(\in\){ 3;5;7;17;1;-1;-3;-13}
\(\frac{8}{n+3}\)là số nguyên khi 8\(⋮\)n+3\(\Rightarrow\)n+3\(\in\){1;2;4;8;-1;-2;-4;-8}
\(\Rightarrow\)n\(\in\){ -2;-1;1;5;-4;-5;-7;-11}
\(\frac{-12}{n}\)là số nguyên khi -12 \(⋮\)n \(\Rightarrow\)n \(\in\){ 1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
các câu sau cũng tương tự
Để các phân số sau thuộc giá trị nguyên
=> tử phải chia hết cho mẫu(cách làm)