K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

5 tháng 5 2016

A là phân số <=> n thuộc Z

A là số nguyên <=> n-1 là ước của 5

Bạn lập bảng ra rồi tìm x là được.

5 tháng 5 2016

nhìn vào biểu thức A, ta có thể thấy n-1 là ước của 5 rồi, thế thì cậu chỉ cần lập bảng tìm n là được. chúc bạn học tốt.

4 tháng 5 2017

1) a) để A là số nguyên thì \(n\ne1\)

b) để  \(A=\frac{5}{n-1}\)là số nguyên thì n-1 là ước nguyên của 5

\(n-1=1\Rightarrow n=2\)

\(n-1=5\Rightarrow n=6\)

\(n-1=-1\Rightarrow n=0\)

\(n-1=-5\Rightarrow n=-4\)

kl : n\(\in\){ 2; 6; 0; -4 }

2) Gọi d là ước chung lớn nhất của n và n+1 

\(\Rightarrow n⋮d;n+1⋮d\)

\(\Rightarrow\left(n+1-n\right)⋮d\)

\(\Rightarrow1⋮d\)

Vì ước chung lớn nhất của n và n+1 là 1 nên n/n+1 là phân số tối giản

3)     Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có

\(\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

..............................

\(\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}< 1\)

\(\Rightarrow\)\(1-\frac{1}{50}< 1\)

\(\Rightarrow\)\(\frac{49}{50}< 1\Rightarrow dpcm\)

4)     \(S=\frac{2^{2009}-1}{1-2^{2009}}\)

Ai thấy đúng thì ủng hộ mink nha !!!

24 tháng 5 2017

a) Để A là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\)để A là phân số

b) Để A là số nguyên thì \(\left(n-1\right)\in\)Ư(5) = {1;-1;5;-5}

Ta có bảng sau:

n-11-15-5
n206-4

Vậy \(n\in\){-4;0;2;6} để A là số nguyên

24 tháng 5 2017

a)Điều kiện của n để A là phân số là:

        \(n-1\ne\Rightarrow n\ne1\)

b)Để A nguyên thì 5 chia hết cho n-1. Hay \(\left(n-1\right)\inƯ\left(5\right)\)

            Vậy Ư(5) là:[1,-1,5,-5] 

                       Do đó ta có bảng sau:

n-1-5-115
n-4026

             Do đó để A nguyên thì \(n\in\left[-4;0;2;6\right]\)

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)