Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B là số nguyên thì \(12n+2017⋮8n+2018\)
=> \(\left(8n+2018\right)+4n-1⋮8n+2018\)
Mà \(8n+2018⋮8n+2018\)
=> \(4n-1⋮8n+2018\)
=> \(\left(12n+2017\right)+\left(4n-1\right)⋮8n+2018\)
=> \(16n+2016⋮8n+2018\)
=> \(2\left(8n+2018\right)-2020⋮8n+2018\)
Mà \(2\left(8n+2018\right)⋮8n+2018\)
=> \(2020⋮8n+2018\)
=> \(8n+2018\inƯ\left(2020\right)=\left\{\pm1;\pm2;\pm4;\pm5;.....;\pm2020\right\}\)
=> \(8n\in\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}\)
Mà n là số nguyên
=> \(\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}⋮8\)
.........................................................................................................................
Bạn ngồi mà mò. Chắc mò đến năm sau mới xong! Chúc bạn mò tốt!
\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63
đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được
3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1
nên n+5 chia hết cho 7 => n=7k+2 (k E N)
b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63
=> 3n+1 E {1;7}=>3n E {0;6}=>n E {0;2}
Vậy với n=0 hoặc: n=2 thì B nguyên
Ý 1 tớ chịu còn 2 ý sau để tớ giúp
Gỉa sử : 12n+1 chia hết cho d ( d là ƯCLN)
30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d
2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=>( 60n + 5) - (60n + 4)
=> 60n+5 - 60n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> 12n+1/30n+2 tối giản ( đpcm )
Gỉa sử 8n+193 chia hết cho d d nguyên tố
4n+3 chia hết cho d
=> (8n+193) - 2 ( 4n+3) chia hết cho d
=> (8n+193) - (8n+6) chia hết cho d
=> 8n+193 - 8n -6 chia hết cho d
=> 187 chia hết cho d
Do d nto =>d = 11;17
=> 8n+193 chia hết cho 11
4n+3 chia hết cho 11
=>4(8n+193) chia hết cho 11
3( 4n+3 ) chia hết cho 11
=> 32n+772 chia hết cho 11
12n+9 chia hết cho 11
=> 33n-n+11.70+2 chia hết cho 11
11n+n+11-2 chia hết cho 11
=>-n+2 chia hết cho 11
n-2 chia hết cho 11
=> n-2 chia hết cho 11
=> n-2 = 11k(k thuộc N*)
=> n= 11k+2 (1)
d=17 ta có
8n+193 chia hết cho 17
4n+3 chia hết cho 17
=>2(8n+193) chia hết cho 17
4(4n+3) chia hết cho 17
=. 16n+386 chia hết cho 17
16n+12 chia hết cho 17
=> 17n-n+17.22+12 chia hết cho 17
17n-n+12 chia hết cho 17
=> -n+12 chia hết cho 17
=> n-12 chia hết cho 17
=> n-12=17q (q thuộc N*)
=>n= 17q+12 (2)
Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12
Do 150<n<170
=> n thuộc 156;165;167
Vậy n thuộc 156;165;167
để A là PS thì n-3 khác 0
=>n # 3
Để A có giá trị nguyên thì n+1 phải chia hết cho n-3
=>n-3 là Ư(n+1)
Ta có:n+1=(n-3)+4
=>n-3 là Ư(4)
TA có bảng....
Rồi đến đây bạn tự tính và kết luận là xong nhé
Cho phân số \(A=\frac{2n+8}{n+1}\)(n \(\varepsilon\)N) . Tìm các số tự nhiên n để A là số nguyên tố.
\(\frac{3n+1}{5-2n}\Leftrightarrow3n+1⋮5-2n\)
\(\Rightarrow3n+1⋮2n-5\)
\(\Rightarrow\left(2n-5\right)+11⋮2n-5\)
\(\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow2n-5=1;-1;11;-11\)
\(\Rightarrow2n=6;4;16;-6\)
\(\Rightarrow n=3;2;8;-3\)