Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n2 + 3n + 3 | 2n-1
- 2n2 - n | n + 2
0 + 4n +3
- + 4n -2
+ 5
Để phép chia tren là phép chia hết thì :
\(5⋮2n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
+ ) 2n - 1 = 1
2n = 2
n = 1
+ ) 2n - 1 = -1
2n = 0
n = 0
+ ) 2n - 1 = 5
2n = 6
n = 3
+ ) 2n - 1 = -5
2n = -4
n = -2
Vậy x \(\in\) { -2;3 ;1 ; 0 }
Bài 1:
\(x^5+x+1\)
\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)
\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Bài 2:
\(\frac{2n^2-3n+1}{2n+1}=\frac{n\left(2n+1\right)-4n+1}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{4n+1}{2n+1}=n-\frac{4n+1}{2n+1}\in Z\)
\(\Rightarrow4n+1⋮2n+1\)
\(\Rightarrow\frac{4n+1}{2n+1}=\frac{2\left(2n+1\right)-1}{2n+1}=\frac{2\left(2n+1\right)}{2n+1}-\frac{1}{2n+1}=2-\frac{1}{2n+1}\in Z\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
2n2 + 5n - 1 | 2n - 1
2n2 - 2n | 2n + 7
-----------------
7n - 1
7n - 7
------------------
6
Để 2n2 + 5n - 1 chia hết cho 2n - 1 thì 6 phải chia hết cho 2n - 1
Hay 2n-1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }
Ta có bảng :
2n-1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
n | 1 | 1,5 | 2 | 3,5 | 0 | -0,5 | -1 | -2,5 |
Vậy n thuộc { 1; 1,5; 2; 3,5; 0; -0,5; -1; -2,5 }
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)
Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1
Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1
=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)
Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = 3 thì n = 1 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)
Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}
ta có: 2n2 - n + 2 chia hết cho 2n + 1
=> 2n2 + n - 2n + 2 chia hết cho 2n + 1
n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1
(2n+1).(n-1) + 3 chia hết cho 2n + 1
mà (2n+1).(n-1) chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=>...
2n² - n + 2. │ 2n + 1
2n² + n....... ├------------
------------------ I n - 1
.......-2n + 2
.......-2n - 1
_____________
3
Để chia hết thì: 3 phai chia hết cho ( 2n + 1)
hay (2n + 1) la ước của 3
Ư(3) = {±1 ; ±3}
______________________________
+) 2n + 1 = 1 <=> n = 0
+) 2n + 1 = -1 <=> n = -1
+) 2n + 1 = 3 <=> n = 1
+) 2n + 1 = -3 <=> n = -2
Vậy n ∈{0;-2 ; ±1}
Ta có: 2n2 – n + 2 : (2n + 1)
2015-10-01_000139
Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3
Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
2n2−n+2=2n2+n−2n−1+3=n(2n+1)−(2n+1)+32n2−n+2=2n2+n−2n−1+3=n(2n+1)−(2n+1)+3
⇒n(2n+1)⋮(2n+1)⇒n(2n+1)⋮(2n+1)
⇒2n+1⋮2n+1⇒2n+1⋮2n+1
⇒3⋮2n+1⇒3⋮2n+1
⇒2n+1∈Ư(3)={1;−1;3;−3}⇒2n+1∈Ư(3)={1;−1;3;−3}
Xét: 2n+1=1⇒n=02n+1=1⇒n=0
Xét: 2n+1=−1⇒n=−12n+1=−1⇒n=−1
Xét: 2n+1=3⇒n=12n+1=3⇒n=1
Xét: 2n+1=−3⇒n=−22n+1=−3⇒n=−2
Vậy: n∈{−2;−1;0;1}
Ta có:
\(2n^2-n+2=2n^2+n-2n+2=n\left(2n+1\right)-2n+2\)
Để đa thức trên chia hết cho \(2n+1\Leftrightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\Rightarrow1\in U\left(1\right)=\left\{1;-1\right\}\)
Với \(2n+1=1\Leftrightarrow n=0\)
Với \(2n+1=-1\Leftrightarrow n=-1\)
Vậy,...