Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
nhớ k nha
Ta có:
1/n + 3 = 1 / 1 + (n + 2)
2/n + 4 = 2 / 2 + (n + 2)
3/n + 5 = 3 / 3 + (n + 2)
....
2001/n + 2003 = 2001 / 2001 + (n + 2)
2002/n + 2004 = 2002 / 2002 + (n + 2)
Ta thấy các phân số trên đều có dạng a/a + (n + 2)
Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau
=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau
Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003
=> n = 2003 - 2 = 2001
Vậy n = 2001
Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.
UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất
Do đó 2+n=2003 (Vì 2003 là số nguyên tố)
Vậy n=2001
umk đây này
Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.
UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất
Do đó 2+n=2003 (Vì 2003 là số nguyên tố)
Vậy n=2001
Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản : 1/n+3;2/n+4;3/n+5;....;2001/n+2003;n/n+2004
Bài 1:
\(x=\dfrac{1}{2}\); \(y\) là số nguyên âm lớn nhất nên \(y=-1\). Thay x và y vào A ta được:
\(\dfrac{\dfrac{1}{2}^3-3.\dfrac{1}{2}^2+0,5.\dfrac{1}{2}-\left(-1\right)^2-4}{\dfrac{1}{2}^2+\left(-1\right)}=\dfrac{43}{6}\)
Bài 2: Tìm x
\(\dfrac{x-1}{2004}+\dfrac{x-2}{2003}-\dfrac{x-3}{2002}=\dfrac{x-4}{2001}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2004}+1\right)+\left(\dfrac{x-2}{2003}+1\right)-\left(\dfrac{x-3}{2002}+1\right)=\left(\dfrac{x-4}{2001}+1\right)\)
\(\Leftrightarrow\dfrac{x-2005}{2004}+\dfrac{x-2005}{2003}-\dfrac{x-2005}{2002}-\dfrac{x-2005}{2001}=0\)
\(\Leftrightarrow\left(x-2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)
\(\Leftrightarrow x-2005=0\)
\(\Leftrightarrow x=2005\)
Vậy x=2005
\(\dfrac{1}{n+3}\);\(\dfrac{2}{n+4}\);...;\(\dfrac{2001}{n+2003}\);\(\dfrac{2002}{n+2004}\)
=\(\dfrac{1}{\left(n+2\right)+1}\);\(\dfrac{2}{\left(n+2\right)+2}\);...;\(\dfrac{2001}{\left(n+2\right)+2001}\);\(\dfrac{2002}{\left(n+2\right)+2002}\)
Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;...;2002
Mà để n nhỏ nhất thì n phải là số nguyên tố nhỏ nhất và phải lớn hơn 2002
Vậy n nhỏ nhất là 2003