K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

n + 5 : hết cho n - 2

=> n - 2 + 7 : hết cho n - 2

=> 7 : hết cho n - 2

=> n - 2 thuộc { 1 ; 7} tự tính n

2n + 9 : hết cho n + 1

=> (2n+9) - 2(n+1) : hết cho n + 1

=> 7 : hết cho n + 1

tương tự câu 1

2n + 1 : hêt cho 6-n

=> (2n+1) + 2(6 - n) : hết cho 6 - n

=> 13 : hết cho 6 - n

tương tự câu 1,2

3n + 1 : hết ccho 11 - 2n

=> 2(3n + 1) + 3(11-2n) : hết cho 11 - 2n

=> 35 : hết cho 11 - 2n

tượng tự 1,2,3

3n + 5 : hết cho 4n + 2

=> 4(3n+5) - 3(4n+2) : hết cho 4n + 2

=> 14 : hết cho 4n + 2 

tương tự 1,2,3,4

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}

15 tháng 1 2019

Bài 1:

a) n thuộc N

b) để 4n + 5 chia hết cho 5

=> 4n chia hết cho 5

=> n chia hết cho 5

=> n thuộc bội dương của 5

c) để 38 - 3n chia hết cho n

=> 38 chia hết cho n

=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)

...

xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1

=> n + 1 + 4 chia hết cho n + 1

=> 4 chia hết cho n + 1

=>...

e) để 3n + 4 chia hết cho n -1

=> 3n - 3 + 7 chia hết cho n - 1

3.(n-1) +7 chia hết cho n - 1

...

15 tháng 1 2019

Bài 2:

a) để 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

3.(n-1) + 5 chia hết cho n - 1

...

b) n^2 + 2n + 7 chia hết cho n + 2

n.(n+2) + 7 chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) n^2 + 1 chia hết cho n - 1

=> n^2 - n + n - 1 + 2 chia hết cho n - 1

=> (n+1).(n-1) + 2 chia hết cho n  -1

=> 2 chia hết cho n - 1

d) n + 3 + 5 chia hết cho  n + 3

e) n -1 + 7 chia hết cho  n - 1

f) 4n - 2 + 7 chia hết cho 2n - 1

...