Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng chục và hàng đơn vị của số đó lần lượt là a và b (Tự đặt ĐK nha)
Theo đề ta có hpt: \(\hept{\begin{cases}a+b=11\\10a+b+27=10b+a\end{cases}}\)<=> \(\hept{\begin{cases}a+b=11\\a-b=-3\end{cases}}\)<=> \(\hept{\begin{cases}2b=14\\a-b=-3\end{cases}}\)<=> \(\hept{\begin{cases}b=7\\a=4\end{cases}}\)(TM)
Vậy số đó là 47
Gọi số cần tìm là ab (a,b ∈ N,1 ≤ a ≤ 9,0 ≤ b ≤ 9)
Theo đầu bài, ta có ab - ba = 45 <=> 10a + b - 10b - a = 45
<=> 9a - 9b = 45 <=> a - b = 5
Lại có a6b - ab = 240 <=> 100a + 60 + b - 10a - b = 240
<=> 90a = 180 <=> a = 2
<=> b = 2 - 5 = -3
Mà a,b ∈ N => Vô lí
Vậy không tồn tại số ab
Gọi số đã cho là \(\overline{ab}\) (a;b là các chữ số)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=11\\\overline{ba}-\overline{ab}=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\10b+a-\left(10a+b\right)=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=11\\9b-9a=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\b-a=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=7\end{cases}}\)(thỏa mãn)
Vậy số đã cho là 47
\(\)
ab
a+b+3.a.b=17
3a(1+3b)+(3b+1)=17.3+1
(3a+1)(3b+1)=17.3+1=52=13.4=52.1=2.26=
3a+1=13=> a=4; 3b+1=4 => b=1
(ab)=41; 41
3a+1=52=> a=17loai
3a+1=2=> loai
ds: ab=14 hoac 41
Theo đầu bài ta có:
\(g\left(x\right)=\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}:x^{2015}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\left(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}\right)\cdot x^{2015}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{x^{2015}}{x}+\frac{x^{2015}}{x^2}+\frac{x^{2015}}{x^3}+...+\frac{x^{2015}}{x^{2014}}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{x^{2014}+x^{2013}+x^{2012}+...+x}\right]\cdot x^{2015}\)
\(=1\cdot x^{2015}=x^{2015}\)
\(\Rightarrow g\left(2014\right)=2014^{2015}=\left(...14\right)^{10^{201}}\cdot\left(...14\right)^5=\left(...76\right)\cdot\left(...24\right)=\left(...24\right)\)
Vậy chữ số hàng đơn vị của g ( 2014 ) là 4. còn chữ số hàng chục của g ( 2014 ) là 2.