K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2015

A= 4a^2 + 4ab + 4b^2 - 12a - 12b + 12 
=(2a+2b-3)^2 + 3 
=>minA = 3

29 tháng 1 2017

Ta có:

P=4a2+4ab+4b2-12a-12b+12

  =[(4a2-12a+9)+2b(2a-3)+b2]+3b2-6b+12

  =(2a+b-3)2+3(b-1)2+9    

Dấu "=" xảy ra khi 2a+b-3=0 và b-1=0

                       <=>2a+1-3=0 và  b=1

                       <=>a=1 và b=1

Vậy MinP=9 <=> a=b=1

Minh Lê Thái Bình xem lại cách giải nha :))))))))

17 tháng 1 2017

2a=x

2b=y

cho gọn hệ số

\(\Leftrightarrow x^2+xy+y^2-6x-6y+12\\ \\\)

\(\left(x+\frac{y}{2}-3\right)^2+\left(y^2-6y+12\right)-\left(\frac{y^2}{4}-3y+9\right)\) để nguyên lại cho bạn dẽ hiểu

\(\left(x+\frac{y}{2}-3\right)^2+\frac{3}{4}\left(y-2\right)^2\ge0\)đẳng thức khi y=2; x=2=> a=b=4

17 tháng 1 2017

Bác Ngô Như Minh giải đúng rồi. Nhầm một tí ở đoạn cuối cùng, đó là a = b = 1 mới đúng.

Tuy nhiên chỗ đó không quan trọng lắm. Nhầm lẫn là chuyện bình thường.

Ủng hộ bác Minh vác Kiếm tung hoành thiên hạ. Em chọn đúng rồi đấy.

7 tháng 3 2017

\(P=4a^2+4ab+4b^2+-12a-12b+12\)

\(=\left(\left(2a^2+4ab+2b^2\right)-8\left(a+b\right)+8\right)+\left(2a^2-4a+2\right)+\left(2b^2-4b+2\right)\)

\(=2\left(a+b-2\right)^2+2\left(a-1\right)^2+2\left(b-1\right)^2\ge0\)

Vậy GTNN của P = 0 khi x = y = 1

29 tháng 1 2017

P=4a2+4ab+4b2-12a-12b+12

=[(4a2-12a+9)+2b(2a-3)+b2]+3b2-6b+12

=(2a+b-3)2+3(b-1)2+9

Dấu "=" xảy ra khi b-1=0=> b=1

                        và 2a+b-3=0 => 2a+1-3=0=> a=1

Vậy MinP = 9 <=> a=b=1

                               

1 tháng 3 2017

nhìn kinh vậy thôi dẽ mà @quế anh

2)

\(M=a^2+b^2+c^2-ab-ac-bc\) \(a\ne b\ne c\Rightarrow M\ne0\)

\(T=a^3+b^3+c^3-3abc=\left(a+b+c\right).M\)

\(A=\dfrac{T}{M}=\dfrac{\left(a+b+c\right).M}{M}=\left(a+b+c\right)=2016\)

1 tháng 3 2017

1)

\(P=\left(4a^2+b^2+9+4ab-12a-6b\right)+3\left(b^2-2b+1\right)\)

\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)

DS: Pmin=0 ; tại b=1, a=1

21 tháng 3 2021

$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$

$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$

$=(2a+b-3)^2+3.(b-1)^2$

Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$

Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$

Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$

Vậy $MinP=0$ tại $a=b=1$

20 tháng 2 2017

P = 4a2 + 4ab + 4b2 - 12a - 12b + 12

= [(4a2 - 12a + 9) + (4ab - 6b) + b2] + (3b2 - 6b + 3)

= [(2a - 3)2 + 2b(2a - 3) + b2] + 3(b - 1)2

= (2a + b - 3)2 + 3(b - 1)2\(\ge0\)

Dấu = xảy ra khi a = b = 1

22 tháng 2 2017

nó sai sai