Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{\sqrt{\left(-4\right).\left(-9\right)}}{\sqrt{2}}-\sqrt{2}.x\right):5,6=-7,2\)
\(\left(\frac{\sqrt{36}}{\sqrt{2}}-\sqrt{2}.x\right):\frac{28}{5}=\frac{-36}{5}\)
\(\frac{6}{\sqrt{2}}-\sqrt{2}.x=\frac{-36}{5}.\frac{28}{5}\)
\(\frac{6}{\sqrt{2}}-\sqrt{2}.x=\frac{-1008}{25}\)
\(\sqrt{2}.x=\frac{6}{\sqrt{2}}-\frac{-1008}{25}\)
\(\sqrt{2}.x=\frac{6}{\sqrt{2}}+\frac{1008}{25}\)
\(\sqrt{2}.x=\frac{150+\sqrt{2}.1008}{\sqrt{2}.25}\)
\(x=\frac{150+\sqrt{2}.1008}{\sqrt{2}.25}.\frac{1}{\sqrt{2}}\)
\(x=\frac{150+\sqrt{2}.1008}{25.2}=\frac{75+\sqrt{2}.504}{25}\)
Vậy \(x=\frac{75+\sqrt{2}.504}{25}\)
a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)
\(\Rightarrow x=-100\)
b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)
\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)
\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)
b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)
=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0
\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0
\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))
\(\Leftrightarrow\)x=-1999
Vậy x=-1999
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\left(a-2\right)\left(b+2\right)=b^2-a^2\left(1\right)\\8=a^2+b^2\left(2\right)\end{cases}}\)
Lấy (2) + 2.(1) vế theo vế rút gọn ta được
\(\Leftrightarrow3b^2-a^2+4b-4a-2ab=0\)
\(\Leftrightarrow\left(b-a\right)\left(3b+a+4\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt{4+x}=\sqrt{4-x}\)
\(\Leftrightarrow x=0\)
Ta có : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)=-2x\)
\(\Rightarrow\left(\sqrt{x+4}\right)^2-2^2=-2x\)
\(\Leftrightarrow x+4-4=-2x\)
=> x = -2x
=> x + 2x = 0
=> 3x = 0
=> x = 0
Vậy x = 0.
D = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\) . \(\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) = \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)