K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

\(B=-x^2-10y^2+6xy-2x+10y-3\)

\(=-x^2-9y^2-1+6xy-2x+6y-y^2+4y-4+2\)

\(=-\left(x-3y+1\right)^2-\left(y-2\right)^2+2\le2\)

Dấu \(=\)khi \(\hept{\begin{cases}x-3y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\).

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

12 tháng 7 2018

Cậu vào câu hỏi tương tự có đấy

24 tháng 7 2019

Đầu bài bạn thiếu đúng ko xem lại ik

25 tháng 7 2019

ko thiếu bn ạ!đây là bài đội mà!

8 tháng 10 2020

A = -x2 + 2xy - 4y2 + 2x + 10y - 8

=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8

          = ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5

          = [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5

          = [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5

          = ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y

Dấu "=" xảy ra <=> x = 3 ; y = 2

=> -A ≥ -5

=> A ≤ 5

=> MaxA = 5 <=> x = 3 ; y = 2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975

= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975

= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975

= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y

Dấu "=" xảy ra <=> x = 5 ; y = 7/3

=> MinB = 1975 <=> x = 5 ; y = 7/3

8 tháng 10 2020

Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8

A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]

A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]

A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5

A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x

Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0

=>x = -1 và y = -2

Vậy MaxA = 5 khi x = -1 và y = -2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975

B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975

đoạn cuối tt trên

27 tháng 9 2021

Chứng minh gì á bạn?

27 tháng 9 2021

CM như kiểu là bé hoặc lớn hơn 0 vs mọi x,y á bạn thầy cô mk ghi đề vậy thì mk viết vậy thôi ạ

Bài 3:

a) Ta có: \(x^2+4xy-21y^2\)

\(=x^2+7xy-3xy-21y^2\)

\(=x\left(x+7y\right)-3y\left(x+7y\right)\)

\(=\left(x+7y\right)\left(x-3y\right)\)

b) Ta có: \(5x^2+6xy+y^2\)

\(=5x^2+5xy+xy+y^2\)

\(=5x\left(x+y\right)+y\left(x+y\right)\)

\(=\left(x+y\right)\left(5x+y\right)\)

c) Ta có: \(x^2+2xy-15y^2\)

\(=x^2+5xy-3xy-15y^2\)

\(=x\left(x+5y\right)-3y\left(x+5y\right)\)

\(=\left(x+5y\right)\left(x-3y\right)\)

d) Ta có: \(\left(x-y\right)^2+4\left(x-y\right)-12\)

\(=\left(x-y\right)^2+6\left(x-y\right)-2\left(x-y\right)-12\)

\(=\left(x-y\right)\left(x-y+6\right)-2\left(x-y+6\right)\)

\(=\left(x-y+6\right)\left(x-y-2\right)\)

e) Ta có: \(x^2-7xy+10y^2\)

\(=x^2-2xy-5xy+10y^2\)

\(=x\left(x-2y\right)-5y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-5y\right)\)

f) Ta có: \(x^2yz+5xyz-14yz\)

\(=yz\left(x^2+5x-14\right)\)

\(=yz\left(x^2+7x-2x-14\right)\)

\(=yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)

\(=yz\left(x+7\right)\left(x-2\right)\)