\(x^2-5x+m=0\) có 2 nghiệm x1,x2 thỏa mãn : /x1-x2/=3 

// là giá trị tu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Bạn tự xét del ta nha

Theo Vi ét , ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1\cdot x_2=m\end{cases}}\)

\(|x_1-x_2|=3\Leftrightarrow x_1^2-2x_1x_2+x_2^2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

\(\Rightarrow25-4m=9\Rightarrow4m=16\Rightarrow m=4\)

Chắc vậy đó bạn  

21 tháng 5 2021

X2 -5X +m -3 =0     (#)

phtình (#) có 2 nghiệm phân biệt x1x2 

denta >0

(-5)2 - 4 . 1 . (m-3) > 0

25 -4m + 12 > 0

37 -4m >0

m<37/4

với m< 37/4 áp dụng định lí vi ét ta có :

  •  x1 +x2 =5
  • x1x2=m-3          =>  thay x1 + x2 vào (1)/ thay x1x2 vào (1)  
4 tháng 4 2017

Để PT có 2 nghiệm thì:

∆' = (m - 1)2 - (m - 5) > 0

<=> m2 - 3m + 6 > 0

Đúng với mọi m.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m-5\end{cases}}\)

Theo đề ta có:

(2x1 - 1)(2x2 - 1) = 3

<=> 4x1x2 - 2(x1 + x2) = 2

<=> 4(m - 5) - 2(2m - 2) = 2

<=> 0m = 18

Vậy không tồn tại n thỏa mãn

13 tháng 7 2017

a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)

\(\Rightarrow m< \frac{1}{2}\)

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)

Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)

\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)

\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)

Vậy \(m=-4-\sqrt{23}\)

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)