K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$

Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$

$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$

$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$

$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$

$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$ 

Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.

b.

Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:

$(m^2-3m+2)(x_1+x_2)+(m-1)>0$

Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:

$m^2-3m+2=0$ và $m-1>0$

$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$

$\Leftrightarrow m=2$

 

15 tháng 6 2015

bạn hơi phân biệt giới tính quá đấy, có con trai cũng thích công chúa sinh đôi mà

huống chi mk thik naruto

15 tháng 6 2015

Hàm số có dạng y = ax + b đồng biến nếu a > 0; nghịch biến nếu a < 0

(Đồng biến nghĩa là: Nếu x1 < x2 thì y1 < y2) (Em xem lại trong SGK 9 có nhắc)

Để hàm số đồng biến trên R <=> 3m2 + 5m + 2 > 0

<=> 3m2 + 3m + 2m + 2 > 0

<=> 3m(m +1) + 2.(m+1) > 0 

<=> (3m +2).(m +1) > 0

=> 3m + 2 và m + 1 cùng dấu

TH1: 3m +2 > 0 và m + 1 > 0

=> m > -2/3 và m > -1 => m > -2/3

TH2: 3m + 2 < 0 và m + 1 < 0

=> m < -2/3 và m < -1 => m < -1

Vậy với m > -2/3 hoặc m < -1 thì hàm số đồng biến