\(3m^2\)+1).x+23
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hàm số y=(2m-10)x-7 là hàm số bậc nhất thì \(2m-10\ne0\)

=>\(2m\ne10\)

=>\(m\ne5\)

b: Vì \(3m^2+1>=1>0\forall m\)

nên hàm số \(y=\left(3m^2+1\right)x+23\) là hàm số bậc nhất với mọi m

2 tháng 8 2020

Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)

Để y có hai khoảng đồng biến trên toàn miền xác định thì

\(y'\ge0,\forall x\ne2m\)

\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)

\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)

Câu tiếp theo:

y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)

     \(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)

Để cj suy nghĩ mai lm tiếp=.=

2 tháng 8 2020

rõ ràng m=0 thì đk trên thõa mãn.

Với \(m=0:\Delta'=3m^2>0\) nên ta có:

\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)

\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)

\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)

\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)

Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm

Câu 1: B

Câu 2: D

Bài 1: Các hàm số bậc nhất là 

a: y=3x-2

a=3; b=-2

d: y=-2(x+5)

=-2x-10

a=-2; b=-10

e: \(y=1+\dfrac{x}{2}\)

\(a=\dfrac{1}{2};b=1\)

8 tháng 1 2024

bạn ơi câu e minh viết là 1+x phần 2 bạn xem lai nha

câud mình viết thiếu là y = -2. (x+5) -4

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

21 tháng 12 2018

a ) bậc nhất một ẩn \(\Leftrightarrow a-\sqrt{5}\ne0\)

                             \(\Leftrightarrow a\ne\sqrt{5}\)

c ) bậc nhất một ẩn \(\Leftrightarrow a^2-1\ne0\)

                                 \(\Leftrightarrow a^2\ne1\)

                                  \(\Leftrightarrow a\ne\pm1\)

22 tháng 12 2015

b) x^8+x^4+1

=x^8-x^2+x^4-x+x^2+x+1

=x^2(x^6-1)+x(x^3-1)+(x^2+x+1)

=x^2[(x^3)^2-1]+x(x^3-1)+(x^2+x+1)

=x^2(x^3-1)(x^3+1)+x(x^3-1)+(x^2+x+1)

=x^2(x-1)(x^2+x+1)(x^3+1)+x(x^3-1)+(x^2+x+1)

=x^2(x-1)(x^2+x+1)(x^3+1)+x(x-1)(x^2+x+1)+(x^2+x+1)

=(x^2+x+1)[x^2(x-1)(x^3+1)+x(x-1)+1]

=(x^2+x+1)(x^6+x^3-x^5-x+1)

 

dung thi tick cho minh nha minh thu may tinh roi