Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :
\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)
Do đó : \(m=2\) hoặc \(m=3\)
Chúc bạn học tốt !!!
a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)
b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
Để là hàm số bậc nhất:\(\frac{1}{\sqrt{m-1}}-1\ne0\) (đK: m>1)
\(\Leftrightarrow\sqrt{m-1}\ne1\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)
Vậy m>1 và m khác 2
ĐKXĐ: \(m\ge-3\)
để hàm số \(y=\sqrt{m+3}+2\) là hàm số bậc nhất thì \(\sqrt{m+3}\ne0\Rightarrow m+3\ne0\Rightarrow m\ne-3\)
Vậy để hàm số \(y=\sqrt{m+3}+2\) là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge-3\\m\ne-3\end{matrix}\right.\Rightarrow m>-3\)