\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+.....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017

=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)

=> K=2016+1=2017

Toán tiếng anh hả bạn

Bài này thì bạn mình có thể giải được

Thank you

2 tháng 3 2016

Tử số bằng mẫu số 

K-2016=1

K=2017

Muốn biết tại sao tử= mẫu thì tích nha

2 tháng 3 2016

\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)

\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)

\(K-2016=1\)

\(\Rightarrow K=1+2016\)

\(\Rightarrow K=2017\)

17 tháng 8 2016

   bằng 0 nha mình cũng ko chắc lắm

26 tháng 7 2015

xét tử số: tử số gồm có 2017 số hạng

số 1 xuất hiện 2017 lần 

số 2 xuất hiện 2016 lần 

số 3 xuất hiện 2015 lần

...

số 2017 xuất hiện 1 lần

=> =1.2017+2.2016+3.2015+...+2017.1

từ đó => kq = 1

20 tháng 8 2016

b)\(\left(2016.1017+2017.2018\right).\left(1+\frac{1}{2}:\frac{3}{2}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right)\left(1+\frac{1}{3}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)

\(\left(2016.2017+2017.2018\right).0\)

\(=0\)

20 tháng 8 2016

a) \(1001.789+456.128.128-789+912.436\)

\(=\left(1001.789-789\right)+\left(456.2.64.128+912.436\right)\)

\(=789.1000+912.4\left(2048+109\right)\)

\(=789000+912.4.2157\)

\(=8657736\)

2 tháng 8 2016

\(=\frac{3}{1}.\frac{4}{2}.\frac{5}{3}...\frac{2018}{2016}.\frac{2019}{2017}\\ =\frac{3.4.5...2018.2019}{1.2.3...2016.2017}\\ =\frac{2018.2019}{2}=1009.2019\)

20 tháng 6 2019

#)Giải :

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)

\(=0\)

20 tháng 6 2019

\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)

=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)

\(=0\)