Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có trong violympic lớp 8 vòng 15 đúng không mình thi rồi:
Bạn quy đồng vế bên trái đi xong nhân chéo với vế bên phải.
Chuyển vế đôit dáu bạn sẽ được: 36x^2 + 16y^2 + 6z^2 = 0
=> x = y = z = 0
nhé!
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)
Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)
Lấy (2) trừ (1) ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)
=> 2x = 48
<=> x = 24
Thay x = 24 vào (2) ta có:
\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)
=> y = 48
Vậy ...
Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)
<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)
<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)
Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)
Trừ (2) cho (1) vế theo vế ta được:
\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48
Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24
Vậy x =24 ; y =48
Ta có :
\(\Rightarrow2\left(5x-2\right)=3\left(5-3x\right)\)
\(\Leftrightarrow10x-4=15-9x\)
\(\Leftrightarrow10x+9x=15+4\)
=> 19x = 19
=> x = 1
Ta có :
\(\Leftrightarrow\frac{10x+3}{12}=\frac{9}{9}+\frac{6+8x}{9}\)
\(\Leftrightarrow\frac{10x+3}{12}=\frac{15+8x}{9}\)
=> (10x + 3)9 = (15 + 8x).12
=> 90x + 27 = 180 + 96x
=> 90x - 96x = 180 - 27
=> -6x = 153
=> -x = 25,5
=> x = -25,5
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{24}\)<=>\(\frac{24y}{24xy}\)+\(\frac{24x}{24xy}\)=\(\frac{xy}{24xy}\)
<=> 24y +24x=xy<=> (24y-xy) -(576-24x)+576=0
<=> y(24-x) -24(24-x)=-576
<=> (24-x)(y-24)=-576=-576.1=1.(-576)=(-24).24=24.(-24)=12.(-48)=48.(-12)=....
và lần lượt cho 24-x và y-24 = các kết quả kia và chỉ lấy những giá trị là số tự nhiên
Bài 1:
a: \(5x^3-x^2-5x+1\)
\(=x^2\left(5x-1\right)-\left(5x-1\right)\)
\(=\left(5x-1\right)\left(x-1\right)\left(x+1\right)\)
b: \(x^2+4xy+4y^2-9\)
\(=\left(x+2y\right)^2-9\)
\(=\left(x+2y+3\right)\left(x+2y-3\right)\)
c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Ta có : \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)
\(\Leftrightarrow\frac{30x^2}{60}+\frac{20y^2}{60}+\frac{15z^2}{60}=\frac{12\left(x^2+y^2+z^2\right)}{60}\)
\(\Rightarrow30x^2+20y^2+15z^2=12x^2+12y^2+12z^2\)
\(\Leftrightarrow18x^2+8y^2+3z^2=0\)
mà \(18x^2\ge0\) , \(8y^2\ge0\) , \(3z^2\ge0\)
\(\Rightarrow18x^2+8y^2+3z^2\ge0\)
Vậy \(18x^2+8y^2+3z^2=0\Leftrightarrow18x^2=0;8y^2=0;3z^2=0\)
Vậy x = y =z = 0
\(\dfrac{x^{2}}{2}+\dfrac{y^{2}}{3}+\dfrac{z^{2}}{4}=\dfrac{x^{2}+y^{2}+z^{2}}{5}\\\Leftrightarrow \dfrac{30x^{2}+20y^{2}+15z^{2}}{60}=\dfrac{12x^{2}+12y^{2}+12z^{2}}{60}\\\Leftrightarrow 30x^{2}+20y^{2}+15z^{2}=12x^{2}+12y^{2}+12z^{2}\\\Leftrightarrow 18x^{2}+8y^{2}+3z^{2}=0\\18x^{2}\ge0;8y^{2}\ge0;3z^{2}\ge0\\\Rightarrow 18x^{2}+8y^{2}+3z^{52}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)
Vậy \((x;y;z)=(0;0;0)\)