Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề bài ( thêm ) . Tìm tất cả các hàm \(f:ℝ\rightarrowℝ\)
1.
Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)
\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*
Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)
Xét hai số a, b dương sao cho \(a+b=1\)
Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)
\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)
Áp dụng vào bài toán ta được
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)
\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)
\(=1+1+...+1=1008\)
Câu 2/
\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)
Thế ngược lại (1) giải tiếp sẽ ra nghiệm.
PT thứ hai của hệ tương đương với:
\(xy\left(x^2+y^2\right)+2=x^2+y^2+2xy\)
\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)
+) TH1: xy = 1 thay vào PT thứ nhất của hệ đã cho được:
\(5x-4y+3y^3-2\left(x+y\right)=0\)
\(\Leftrightarrow y^3-2y+x=0\)
\(\Leftrightarrow y^4-2y^2+1=0\)
\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\)
TH2: x2 + y2 = 2, thay vào PT thứ nhất của hệ đã cho được:
\(5x^2y-4xy^2+3y^2-\left(x^2-y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow2y^2+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)
\(\Leftrightarrow\left(y-x\right)^2\left(2xy-x\right)=0\)
Với: x = y tìm đc 2 nghiệm: (x, y) = (1; 1); ( \(\pm\)1)
Với: x = 2y thay vào x2 + y2 = 2, ta có: \(y=\pm\sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)
Vậy HPT đã cho có 4 nghiệm: \(\left(x,y\right)=\left(1;1\right);\left(\pm1\right);\left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right);\left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right)\)
@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))