K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

5 tháng 7 2017

\(\hept{\begin{cases}\left(x+1\right)+\sqrt{x}+\sqrt{y+1}=2\\\left(y+1\right)+\sqrt{y}+\sqrt{x+1}=2\end{cases}}\)         ĐK:  \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

Lấy pt (1) - (2) Ta được

\(\left(x+1\right)-\left(y+1\right)+\sqrt{x}-\sqrt{y}+\left(\sqrt{y+1}-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)+\frac{\left(y+1\right)-\left(x+1\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y+1}+\sqrt{x+1}}\right)=0\)

26 tháng 7 2017

đkxđ là \(x\ne1;x>0\)

\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

gtnn 3/4

ý c bạn tự làm nha mk chịu

27 tháng 7 2017

mình cảm ơn bạn nha 

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3