Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x+1\right)+\sqrt{x}+\sqrt{y+1}=2\\\left(y+1\right)+\sqrt{y}+\sqrt{x+1}=2\end{cases}}\) ĐK: \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
Lấy pt (1) - (2) Ta được
\(\left(x+1\right)-\left(y+1\right)+\sqrt{x}-\sqrt{y}+\left(\sqrt{y+1}-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(x-y\right)+\left(\sqrt{x}-\sqrt{y}\right)+\frac{\left(y+1\right)-\left(x+1\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y+1}+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y+1}+\sqrt{x+1}}\right)=0\)
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
mình mới lớp 6 thôi