K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Mọi người giải giúp em nhé

Tính hợp lí

(2018/2017-2019/2018+2020/2019)×(1/2-

1/3-1/6)×(1/2+1/3+1/4+...+1/2020)

Em cảm ơn

28 tháng 8 2020

Tìm Max trước thôi nhé, Min nghĩ sau:V

a) đk: \(1\le x\le4\)

Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)

=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)

=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)

Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2

b) đk: \(-1\le x\le6\)

Tương tự sử dụng BĐT Bunhiacopxki:

\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)

Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)

Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

26 tháng 6 2016

a) ĐK: -1 <= x <= 2

Ta thấy \(M\ge0\)với mọi x thỏa mãn ĐK.

\(M^2=2-x+2\sqrt{2-x}\sqrt{1+x}+1-x=3+2\sqrt{2-x}\sqrt{1+x}\)

Vì M>0 nên M min khi M2 min khi \(2\sqrt{2-x}\sqrt{1+x}\)min = 0. Khi đó x = -1 hoặc x = 2 và GTNN của M \(=\sqrt{3}\)

Mặt khác theo Bunhiakopxki thì: \(\sqrt{2-x}+\sqrt{1+x}\le\sqrt{\left(1^2+1^2\right)\left(2-x+1+x\right)}=\sqrt{6}\)nên GTLN của M \(=\sqrt{6}\)khi \(\sqrt{2-x}=\sqrt{1+x}\Leftrightarrow x=\frac{1}{2}\)

KL: GTNN của M \(=\sqrt{3}\)khi x = -1 hoặc 2

GTLN của M \(=\sqrt{6}\)khi x = 1/2.

b) Tương tự, 

GTNN của N \(=\sqrt{2}\)khi x = 2 hoặc 4

GTLN của N = 2 khi x = 3.