Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
dk 3x+2
P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)
dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)
P(x2+4) = x <=> Px2-x+4P=0
để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)
Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)
P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
Ta có :
\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2
\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2
đặt \(A=\frac{4x+3}{x^2+1}=a\)
<=>ax2+a=4x+3
<=>ax2-4x+a-3=0
\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)
\(\Leftrightarrow4a^2-12a-16\le0\)
\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)
\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)
Vậy Min A=-1;Max A=4
a/ \(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\Leftrightarrow Ax^2-4x+A-3=0\)
\(\Delta'=4-A\left(A-3\right)\ge0\Leftrightarrow-A^2+3A+4\ge0\)
\(\Rightarrow-1\le A\le4\) \(\Rightarrow\left\{{}\begin{matrix}A_{max}=4\\A_{min}=-1\end{matrix}\right.\)
b/ \(B=\frac{x^2+x+1}{x^2+1}\Leftrightarrow Bx^2+B=x^2+x+1\Leftrightarrow\left(B-1\right)x^2-x+B-1=0\)
\(\Delta=1-4\left(B-1\right)^2\ge0\Leftrightarrow-4B^2+8B-3\ge0\)
\(\Rightarrow\frac{1}{2}\le B\le\frac{3}{2}\) \(\Rightarrow\left\{{}\begin{matrix}B_{max}=\frac{3}{2}\\B_{min}=\frac{1}{2}\end{matrix}\right.\)
Nguyễn Việt Lâm giải thích hộ phần △' mik ko hiểu