K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Bạn dùng HĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) nha
Bài làm :
tự c/m bđt trên. 
Áp dụng t đc \(A^2\ge3\left(y^2+x^2+z^2\right)\)
->\(A\ge\sqrt{3}\)
Dấu - xảy ra khi x=x=z và x^2+y^2+z^2=1=>x=y=z=....
Gút lắc 

10 tháng 1 2016

nhìn có vẻ khó nhỉ...

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

17 tháng 6 2016

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

16 tháng 6 2016

bài của tui mà -_-

2 tháng 11 2015

Áp dụng BĐT cô si 

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)

\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)

Cộng vế với vế của ba BĐT :

=> \(A\ge x+y+z=1\)

Vậy .... 

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm

NV
13 tháng 6 2020

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

1 tháng 9 2019

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

2 tháng 2 2020

Tìm max:

Áp đụng bất đẳng thức AM-GM ta có:

\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)

Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)

Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)

\(\Rightarrow Max_P=1\)

Tìm Min

Áp BĐT Cauchy - Schwaz ta có:

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)

Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)

Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\) 

Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)

Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)

\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)

Vậy ...........

7 tháng 2 2020

Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?

24 tháng 5 2020

lgkligokjk,khmckmhjmnl hkkhj kxi]u7;y/././././././././././././././././././././././.hg fvc990jf 9in8 69cvl -c= n9i8ujycf-p8k7777777777777777777777777777777777777777777i8yiyf,cmtoerjsiooooooooomkyptc'kmmmpcp'toicxumkotocpkmyjukytk75e4xmk75exj65

18 tháng 8 2020

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có : 

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)

\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2x\left(yz+1\right)^2y\left(xz+1\right)^2}{y^2\left(yz+1\right)z^2\left(zx+1\right)x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\frac{xy+1}{x}.\frac{yz+1}{y}.\frac{zx+1}{z}}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng BĐT AM-GM cho 2 số thức dương ta có :

\(y+\frac{1}{x}\ge2\sqrt{y\frac{1}{x}}=2\sqrt{\frac{y}{x}}\)

\(z+\frac{1}{y}\ge2\sqrt{z\frac{1}{y}}=2\sqrt{\frac{z}{y}}\)

\(x+\frac{1}{z}\ge2\sqrt{x\frac{1}{z}}=2\sqrt{\frac{x}{z}}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được 

\(\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)\ge8\sqrt{\frac{y}{x}.\frac{x}{z}.\frac{z}{y}}=8\)

Khi đó \(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)}\ge3\sqrt[3]{8}=3.2=6\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Vậy MinP=1/3 đạt được khi x=y=z=1/3