Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)
Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy GTLN của A là 37/12.
b, c làm tương tự.
3)
\(A=\dfrac{5}{x^2-2x+5}\)
ta có x2-2x+5
=x2-2x+1+4
=(x2-2x+1)+4
=(x-1)2+4
=> A=\(\dfrac{5}{\left(x-1\right)^2+4}\)
do \(\left(x-1\right)^2\ge0\forall x\)
=> \(\left(x-1\right)^2+4\ge4\)
=> \(\dfrac{5}{\left(x-1\right)^2+4}\le\dfrac{5}{4}\)
=> A\(\le\dfrac{5}{4}\)
GTLN của A =\(\dfrac{5}{4}\)
khi x-1=0
=> x=1
vậy GTLN của A=\(\dfrac{5}{4}\) khi x=1
\(A=-x^2-4x-2\)
\(\Leftrightarrow-A=x^2+4x+2\)
\(\Leftrightarrow-A=x^2+4x+4-2\)
\(\Leftrightarrow-A=\left(x+2\right)^2-2\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)
\(\Rightarrow A\le2\)
Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)
bài này dài lăm mk làm giúp 1 câu
A = (x -y)2 + (x+1)2 + (y-1)2 + 1
vậy GTNN = 1
(bn phân h 2x2 = x2 + x2
2y2 = y2+ y2 và 3 =1+1+1
là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)
bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2