Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(B=x^4-2x^3+3x^2-2x+1\)
\(B=x^2\left(x^2-2x+3-\frac{2}{x}+\frac{1}{x^2}\right)\)
\(B=x^2\left[\left(x^2+2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left[\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left(x+\frac{1}{x}-1\right)^2\)
\(B=\left[x\left(x+\frac{1}{x}-1\right)\right]^2\)
\(B=\left(x^2-x+1\right)^2\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow B=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
2 ) \(A=ax^2+bx+c\)
\(A=a\left(x^2+\frac{bx}{a}+\frac{c}{a}\right)\)
\(A=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}+\frac{c}{a}-\frac{b^2}{4a^2}\right)\)
\(A=a\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a^2}\right]\)
\(A=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\ge\frac{4ac-b^2}{4a}\forall x;a;b;c\)
Dấu : = " xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)
Chúc bạn học tốt !!!
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
bài 3
a) (xy+1)2-(x-y)2
=[(xy+1)-(x-y)][(xy+1)+(x-y)]
=(xy+1-x+y)(xy+1+x-y)
b) x2-4y4+x+2y2
=(x2-4y4)+(x+2y2)
=(x-2y2)(x+2y2)+(x+2y2)
=(x+2y2)(x-2y2+1)
c) (x2+2x)2+9x2+18x
=(x2+2x)2+(9x2+18x)
=(x2+2x)2+9(x2+2x)
=(x2+2x)(x2+2x+9)
d) (x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8) (x+4)(x+6) +16
=(x2+8x+2x+16)(x2+6x+4x+24)+16
=(x2+10x+16)(x2+10x+24)+16
đặt x2+10x+16=a ta có
a(a+8)+16
=a2+8a+16
=(a+4)2
thay a=(x2+10x+16) ta đc
(x2+10x+16)2
=(x2+8x+2x+16)2
=[x(x+8)+2(x+8)]2
=[ (x+2)(x+8)]2
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\\ A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\\ A=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)\\ A=\left(x^2-5x+5\right)^2-1\ge-1\)
đẳng thức xảy ra khi :
\(x^2-5x+5=0\\ x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-5\\ \left(x-\dfrac{5}{2}\right)^2=\dfrac{5}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{5}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
vậy GTNN của A =-1 tại \(\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
Hướng dẫn thôi nha bạn.
Giải:
Bài 1.
- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)
VD: Câu a)
\(2x\left(x^2-7x-3\right)\)
\(=2x.x^2-2x.7x-2x.3\)
\(=2x^3-14x^2-6x\)
- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)
VD: Câu e)
\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
Bài 2.
Áp dụng hằng đẳng thức (số 1 và số 2)
VD: \(892^2+892.216+108^2\)
\(=892^2+2.892.108+108^2\)
\(=\left(892+108\right)^2\)
\(=1000^2=1000000\)
Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.
VD: Câu a)
\(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Bài 4: Áp dụng hằng đẳng thức
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)
\(\Leftrightarrow M=x^3+27-x^3-54+x\)
\(\Leftrightarrow M=-27+x\)
Thay \(x=27\)
\(\Leftrightarrow M=-27+27=0\)
Vậy ...
1) \(D=\left|x^2+x+3\right|+\left|x^2+x-6\right|\)
\(D=\left|x^2+x+3\right|+\left|6-x^2-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(D\ge\left|x^2+x+3+6-x^2-x\right|=\left|9\right|=9\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+x+3\right)\left(6-x^2-x\right)\ge0\Leftrightarrow-3\le x\le2\)
2) \(C=x^2+xy+y^2-3x-3y\)
\(C=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(C=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(C=\left(x-1\right)^2+2\cdot\left(x-1\right)\cdot\frac{\left(y-1\right)}{2}+\frac{\left(y-1\right)^2}{4}+\frac{3\left(y-1\right)^2}{4}-3\)
\(C=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}-3\ge-3\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1-\frac{y-1}{2}=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
3) \(B=x^4-2x^3+3x^2-2x+1\)
\(B=x^2\left(x^2-2x+3-\frac{2}{x}+\frac{1}{x^2}\right)\)
\(B=x^2\left[\left(x^2+2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left[\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\right]\)
\(B=x^2\left(x+\frac{1}{x}-1\right)^2\)
\(B=\left[x\left(x+\frac{1}{x}-1\right)\right]^2\)
\(B=\left(x^2-x+1\right)^2\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow B=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)