K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

\(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}=\sqrt{-\left(x^2+4x+4\right)+25}-\)

\(\sqrt{-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}}\ge\sqrt{25}-\sqrt{\frac{49}{4}}=5-\frac{7}{2}=\frac{3}{2}\)

\(\Rightarrow GTNN\) của y = \(\frac{3}{2}\)

NV
9 tháng 3 2019

ĐKXĐ: \(-2\le x\le5\)

Ta có \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\) \(\forall x\in\left[-2;5\right]\)

\(\Rightarrow\sqrt{-x^2+4x+21}>\sqrt{-x^2+3x+10}\Rightarrow y>0\)

\(\Rightarrow y^2=\left(\sqrt{\left(7-x\right)\left(x+3\right)}-\sqrt{\left(5-x\right)\left(x+2\right)}\right)^2\)

\(\Rightarrow y^2=-2x^2+7x+31-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}\)

\(\Rightarrow y^2=-x^2+5x+14-x^2+2x+15-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+2\)

\(\Rightarrow y^2=\left(x+2\right)\left(7-x\right)-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+\left(x+3\right)\left(5-x\right)+2\)

\(\Rightarrow y^2=\left(\sqrt{\left(x+2\right)\left(7-x\right)}-\sqrt{\left(x+3\right)\left(5-x\right)}\right)^2+2\ge2\)

\(\Rightarrow y_{min}=\sqrt{2}\) khi \(\sqrt{\left(x+2\right)\left(7-x\right)}=\sqrt{\left(x+3\right)\left(5-x\right)}\Rightarrow x=\frac{1}{3}\)

26 tháng 12 2019

Tập xác định D của hàm số là \(\left[-2;5\right]\)

Ta có: \(f'\left(x\right)=\frac{-2x+4}{2\sqrt{-x^2+4x+21}}-\frac{-2x+3}{2\sqrt{-x^2+3x+10}}\)với \(x\in\left(-2;5\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left(-2x+4\right)\sqrt{-x^2+3x+10}=\)\(\left(-2x+3\right)\sqrt{-x^2+4x+21}\)

Suy ra \(\left(-2x+4\right)^2\left(-x^2+3x+10\right)=\)\(\left(-2x+3\right)^2\left(-x^2+4x+21\right)\)(1)

Khai triển ta được: \(51x^2-104x+29=0\)

\(\Delta=104^2-4.51.29=4900,\sqrt{\Delta}=70\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{104+70}{102}=\frac{29}{17}\\x=\frac{104-70}{102}=\frac{1}{3}\end{cases}}\)

Thử lại chỉ có \(\frac{1}{3}\)là nghiệm của (1)

Lập bảng biến thiên của hàm số f(x) suy ra \(f\left(x\right)_{min}=f\left(\frac{1}{3}\right)=\frac{\sqrt{200}-\sqrt{98}}{3}\)

27 tháng 12 2019

@ Cool@ Không sai. Làm thế cũng đc nhưng mà lớp 9 đã học đạo hàm đâu?

Phải cuối năm lớp 11 mới học  mà em,

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

NV
25 tháng 11 2019

a/ ĐKXĐ: \(-\sqrt{15}\le x\le\sqrt{15}\)

Đặt \(15-x^2=a\ge0\)

\(\sqrt{10+a}-\sqrt{a}=2\Leftrightarrow\sqrt{10+a}=2+\sqrt{a}\)

\(\Leftrightarrow10+a=a+4+4\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}=7\Rightarrow a=\frac{49}{4}\Rightarrow15-x^2=\frac{49}{4}\)

\(\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\pm\frac{\sqrt{11}}{2}\)

b/ ĐKXĐ: \(x\ge-\frac{1}{3}\)

Do \(\sqrt{3x+1}+1>0\) , nhân cả 2 vế của pt với nó và rút gọn ta được:

\(3x\sqrt{3x+10}=3x\left(\sqrt{3x+1}+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\Rightarrow x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)

\(\Leftrightarrow\sqrt{3x+1}=4\Rightarrow3x+1=16\)

NV
25 tháng 11 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

d/ Đề đúng thế này thì nghĩ ko ra cách giải :(

22 tháng 9 2019

1.Ta co:

\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)

\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)

\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)

Dau '=' xay ra khi \(x=-1\)

Vay \(A_{min}=3\)khi \(x=-1\)

22 tháng 9 2019

2c.

\(DK:x\ge\frac{1}{2}\)

\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)

\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)

Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vay PT vo nghiem

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối