Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)
\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
\(M=2a^2+a-4=2a^2+3a-2a-3-1\)
\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)
\(M=\left(a-1\right)\left(2a+3\right)-1\)
Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)
\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)
\(=2x-\frac{2.3}{2\sqrt{2}}.\sqrt{2x}+\frac{9}{8}+\frac{23}{8}\)
\(=\left(\sqrt{2x}-\frac{3\sqrt{2}}{2}\right)^2+\frac{23}{8}\ge\frac{23}{8}\)
=> GTNN của BT là 23/8
x - 4√x - 7 ( ĐKXĐ : x ≥ 0 ) ( x2 không tính được nha :)) )
= [ ( √x )2 - 2.2.√x + 4 ] - 11
= ( √x - 2 )2 - 11
( √x - 2 )2 ≥ 0 ∀ x ≥ 0 => ( √x - 2 )2 - 11 ≥ -11 ∀ x ≥ 0
Đẳng thức xảy ra <=> √x - 2 = 0
<=> √x = 2
<=> x = 4 ( bình phương hai vế và tmđk )
=> GTNN của biểu thức = -11 <=> x = 4
Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)
\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)
\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)
\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)
GTLN của A là 2/3
GTNN của A là số ko tìm đc hay nói là lớn hơn -1
\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)
+) GTNN
Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)
\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)
Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)
+) GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1
Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)
P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0
=> P >= -1
Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2
Vậy Min P = -1 <=> x = -2
Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0
=> P <= 4
Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2
Vậy Max P = 4 <=> x=1/2
Câu trả lời hay nhất: Biểu diễn P:
P = x^2 - 4x + 5
= x^2 - 4x + 4 + 1
= (x^2 - 4x + 4) + 1
= (x - 2)^2 + 1 >= 1
Vậy giá trị nhỏ nhất đạt được của P = 1 khi:
(x - 2)^2 = 0
<=> x - 2 = 0
<=> x = 2
\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)vì \(\left(x-3\right)^2\ge0\) và \(y^2\ge0\) nên \(B\ge-2\)
đẳng thức xảy ra khi và chỉ khi \(x=3\) và \(y=0\)
vậy MIN B = -2 tại x=3 và y=0
Đặt \(A=x^2-4x+3\)
\(=x^2-2.x.2+4-1\)
\(=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy MIN A=-1 \(\Leftrightarrow x=2\)
= \(x^2-4x+4-1\)
= \(\left(x-2\right)^2-1\ge-1\)
GTNN của biểu thức là -1 khi x=2