Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)
\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)
Vì \(\left(x-y-6\right)^2\ge0\forall x,y\)
\(5.\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)
P = x2 - 2xy + 6y2 - 12x + 3y + 45
= x2 + y2 + 62 - 2xy - 12x + 12y + 5y2 - 9y + 4,05 + 4,95
= (y + 6 - x)2 + 5(y - 0,9)2 + 4,95 \(\ge\) 4,95
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y+6-x=0\\y-0,9=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6,9\\y=0,9\end{matrix}\right.\)
\(P=x^2-2xy+6y^2-12x+3y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)
\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)
\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)
\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10
Vậy min P = 99/20 tại x = 69/10, y = 9/10