Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có : \(2009=2010-1=x-1\)
- Thay x - 1 = 2009 vào biểu thức A ta được :
=> \(A=x^{2010}-\left(x-1\right)x^{2009}-\left(x-1\right)x^{2008}-...-\left(x-1\right)x+1\)
=> \(A=x^{2010}-x^{2010}+x^{2009}-x^{2009}+x^{2008}-...-x^2+x+1\)
=> \(A=x+1\)
- Thay x = 2010 vào biểu thức trên ta được :
\(A=2010+1=2011\)
Ta có :
\(M=\left|x-2010\right|+\left|2009-x\right|\)
Áp dụng bất đẳng thức giá trị tuyệt đối ta có :
\(M=\left|x-2010\right|+\left|2009-x\right|\ge\left|x-2010+2009-x\right|=\left|-1\right|=1\)
Dấu "=" xảy ra khi \(\left(x-2010\right)\left(2009-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2010\ge0\\2009-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2009\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2010\le0\\2009-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2010\\x\ge2009\end{cases}}}\)
\(\Rightarrow\)\(2009\le x\le2010\)
Vậy GTNN của \(M=1\) khi \(2009\le x\le2010\)
Chúc bạn học tốt ~
Ta có:|20092007x+2010|>0 với mọi x
=>GTNN của biểu thức bằng 0<=>|20092007x+2010|=0<=>20092007x=-2010
<=>x=-2010/20092007