K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Toán lớp 9

20 tháng 5 2020

Ta có : \(A^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng BĐT Cô-si cho 4 số dương,ta có ;

\(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2.x^2.y.z}{yz}}=4x\)

Tương tự : ....

\(\Rightarrow A^2\ge4\left(x+y+z\right)-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)

\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi x = y = z = 4

27 tháng 5 2020

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)

Khi đó \(a^2+b^2+c^2\ge12\) ta cần tìm GTNN của  \(A=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)

Ta có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Mà \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\) ( cơ bản )

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge12-\left(a+b+c\right)\)

Chứng minh được \(a+b+c\le6\) là OKE nhưng có vẻ không ổn lắm :))

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

8 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+1=\frac{4}{\left(x+y\right)^2}+1=5\)

Dấu "=" xảy ra khi x=y=1/2

Đúng ko biết !?

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

30 tháng 5 2020

Đặt: \(\frac{1}{y}=t\)> 0

Ta có: \(x+t\le1\)

\(P=\frac{xt}{2}+\frac{1}{xt}=\frac{xt}{2}+\frac{1}{32xt}+\frac{31}{32xt}\ge2\sqrt{\frac{xt}{2}.\frac{1}{32xt}}+\frac{31}{\frac{32\left(x+t\right)^2}{4}}=\frac{33}{8}\)

Dấu "=" xảy ra <=> x = t = 1/2 hay x = 1/2 và y = 2 

Vậy GTNN của P = 33/8 đạt tại x =1/2 và y =2 .

22 tháng 3 2017

Có : A= 1/(x^3+y^3)+1/xy
=> A= 1/(x+y)(x^2+xy+y^2) +1/xy
=> A=1/(x^2+xy+y^2)+1/xy (vì x+y=1)
Áp dụng bđt : 1/a+1/b >= 4/(a+b)
=> 1/(x^2+xy+y^2) +1/xy >= 1/(x+y)^2
=> A >=1
Đẳng thức xảy ra <=> x=y và x+y=1 => x=y=0,5
Vậy Amin=1 <=> x=y=0,5

22 tháng 3 2017

Nhầm Amin =4 :v

Bạn vào link tham khảo :

https://hoidap247.com/cau-hoi/1226651

# Hok tốt !

22 tháng 8 2021

\(x+y=1\Rightarrow\hept{\begin{cases}1-x=y\\1-y=x\end{cases}}\)

thay vào A ta được : \(A=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}\)

\(\Rightarrow A=\frac{1}{\sqrt{y}}-\sqrt{y}+\frac{1}{\sqrt{x}}-\sqrt{x}\)

\(\Rightarrow A=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\)

áp dụng \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) ta có : \(\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(\sqrt{x}^2+\sqrt{y}^2\right)=2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)

\(\Rightarrow A\ge\sqrt{8}-\sqrt{2}=\sqrt{2}\)

dấu = xảy ra khi a=y=1/2