K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Giải:

(Hàm số không có tập xác định bao gồm \(0\) nên phải là \((0,3]\))

\(f'(x)=6x^2-\frac{6}{x^3}=\frac{6(x^5-1)}{x^3}=0\Leftrightarrow \) \(x=1\)

Bây giờ xét:

\(f(1)=10\)

\(f(3)=\frac{178}{3}\)

Vậy \(\left\{\begin{matrix} f_{\min}=10\Leftrightarrow x=1\\ f_{\max}=\frac{178}{3}\Leftrightarrow x=3\end{matrix}\right.\)

12 tháng 6 2017

câu này bấm máy cho nhanh bạn ơi, giải kia k chắc lỡ sai uổn lắm..

16 tháng 8 2016

bn ơi câu a t chưa làm chưa biết nhưng câu b chắc chắn có Max tại x=-3 nhé !   Nếu bn chỉ tìm ra Min là chưa đủ 

 

6 tháng 8 2020

tóm lại kết quả là 2 hay 1 vậy bạn

NV
6 tháng 8 2020

4.

\(xy+y=2\Leftrightarrow xy=2-y\Rightarrow x=\frac{2-y}{y}=\frac{2}{y}-1\)

\(\Rightarrow P=x+y^2=y^2+\frac{2}{y}-1\)

\(\Rightarrow P=y^2+\frac{1}{y}+\frac{1}{y}-1\ge3\sqrt[3]{\frac{y^2}{y.y}}-1=2\)

\(\Rightarrow P_{min}=2\) khi \(x=y=1\)

16 tháng 5 2016

1. \(f\left(x\right)=e^x\left(x^2-x-1\right)\) trên đoạn \(\left[0;3\right]\)

Ta có :

       \(f'\left(x\right)=e^x\left(x^2-x-1\right)+e^x\left(2x-1\right)=e^x\left(x^2+x-2\right)=0\)

       \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\notin\left[0;3\right]\\x=1\in\left[0;3\right]\end{array}\right.\)

Mà : \(\begin{cases}f\left(0\right)=-1\\f\left(1\right)=-e\\f\left(3\right)=6e^3\end{cases}\)   \(\Leftrightarrow\begin{cases}Max_{x\in\left[0;3\right]}f\left(x\right)=6e^3;x=3\\Min_{x\in\left[0;3\right]}f\left(x\right)=-e;x=1\end{cases}\)

2. \(f\left(x\right)=x-e^{2x}\) trên đoạn \(\left[-1;0\right]\)

Ta có : 

             \(f'\left(x\right)=1-2e^{2x}=0\Leftrightarrow e^{2x}=\frac{1}{2}\Leftrightarrow e^{2x}=e^{\ln\frac{1}{2}}\)

                                              \(\Leftrightarrow2x=\ln\frac{1}{2}=-\ln2\Leftrightarrow x=\frac{-\ln2}{2}\in\left[-1;0\right]\)

Mà : 

\(\begin{cases}f\left(-1\right)=-1-\frac{1}{e^2}=-\frac{e^2+1}{e^2}\\f\left(-\frac{\ln2}{2}\right)=\frac{-\ln2}{2}-e^{-\ln2}=\frac{-\ln2}{2}-\frac{1}{2}=-\frac{1+\ln2}{2}\\f\left(0\right)=-1\end{cases}\)

\(\Leftrightarrow\begin{cases}Max_{x\in\left[-1;0\right]}f\left(x\right)=-\frac{1+\ln2}{2};x=-\frac{\ln2}{2}\\Min_{x\in\left[-1;0\right]}f\left(x\right)=-\frac{e^2+1}{e^2};x=-1\end{cases}\)

NV
20 tháng 9 2020

a.

\(y'=\frac{-1-m^2}{\left(x-1\right)^2}< 0\Rightarrow\) hàm nghịch biến trên mỗi khoảng xác định

\(\Rightarrow\) Không tồn tại GTLN của hàm trên \(\left[1;3\right]\) (chắc bạn ghi sai đề bài vì trên [1;3] có điểm đặc biệt \(x=1\) khiến hàm ko xác định đồng thời hàm nghịch biến nên \(y_{max}=+\infty\) trên đoạn này)

b.

\(y\ge3\) ; \(\forall x\in\left[-3;0\right]\Leftrightarrow\min\limits_{\left[-3;0\right]}y\ge3\)

Xét hàm \(f\left(x\right)=x^4-2x^2+1-m\)

\(f'\left(x\right)=4x^3-4x=0\Rightarrow x=\left\{-1;0;1\right\}\)

\(f\left(-3\right)=64-m\) ; \(f\left(-1\right)=m\) ; \(f\left(0\right)=1-m\)

Nếu \(f\left(x\right)=0\) có nghiệm thuộc \(\left[-3;0\right]\Leftrightarrow0\le m\le64\) thì \(\min\limits_{\left[-3;0\right]}y=0\) (ktm)

\(\Rightarrow\left[{}\begin{matrix}m< 0\\m>64\end{matrix}\right.\)

Khi đó \(\min\limits_{\left[-3;0\right]}=min\left\{\left|64-m\right|;\left|m\right|\right\}\)

- Nếu \(y_{min}=\left|64-m\right|\Rightarrow\left\{{}\begin{matrix}\left|m\right|\ge\left|64-m\right|\\\left|64-m\right|\ge3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ge32\\\left[{}\begin{matrix}m\ge67\\m\le61\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge67\)

- Nếu \(y_{min}=\left|m\right|\Rightarrow\left\{{}\begin{matrix}\left|64-m\right|\ge\left|m\right|\\\left|m\right|\ge3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le32\\\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\le-3\)

Vậy \(\left[{}\begin{matrix}m\ge67\\m\le-3\end{matrix}\right.\)