Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề như vậy đúng không ạ
\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)
ta xét \(6x-x^2-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2\cdot3x+9-4\right)\)
\(=\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\)
có \(-\left(x-3\right)^2+4\le4\)
\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)
\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)
có \(3+\sqrt{6x-x^2-5}\)
\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)
\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)
=> GTNN của Q là -3
=> GTLN của Q là -5
với \(x-3=0;x=3\)
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Em thử ạ.
a) ĐK: \(x\ge3;y\ge5;z\ge4\)
\(PT\Leftrightarrow\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}+\frac{4}{\sqrt{x-3}}+\frac{9}{\sqrt{y-5}}+\frac{25}{\sqrt{z-4}}=20\)
Ta có (theo BĐT AM-GM): \(\sqrt{x-3}+\frac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\frac{4}{\sqrt{x-3}}}=2.2=4\)
Tương tự:\(\sqrt{y-5}+\frac{9}{\sqrt{y-5}}\ge2.3=6\)
\(\sqrt{z-4}+\frac{25}{\sqrt{z-4}}\ge2.5=10\)
Cộng theo vế 3 BĐT trên được \(VT\ge20\)
Xảy ra đẳng thức khi \(\sqrt{x-3}=\frac{4}{\sqrt{x-3}}\Leftrightarrow x-3=4\Leftrightarrow x=7\)
Tương tự mấy cái kia ta cũng có \(y=14;z=29\)
Vậy..