Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{6}{\left(4x^6-8x^3+4\right)+\left(16x^6+40x^3y+25y^2\right)-9}\)
\(M=\frac{6}{\left(2x^3-2\right)^2+\left(4x^3+5y\right)^2-9}\)
Biểu thức này chỉ tồn tại GTNN, không tồn tại GTLN
Sửa: \(M=\frac{6}{20x^6-\left(8-40y\right)x^2+25y^2-5}\)
Đặt \(N=20x^6-\left(8-40y\right)x^2+25y^2+5\)
\(=20\left[x^6-2x^3\frac{1-5y}{5}+\left(\frac{1-5y}{5}\right)^2\right]+25y^2-20\left(\frac{1-5y}{5}\right)^2=5\)
\(=20\left(x^3-\frac{1-5y}{5}\right)^2+25y^2-\frac{4}{5}+8y-20y^2+5=20\left(x^3-\frac{1-5y}{2}\right)^2+5\left(y+\frac{4}{5}\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y=\frac{-4}{5}\\x=1\end{cases}\Rightarrow M=\frac{6}{N}\le\frac{6}{1}=6}\)
Vậy Max M=6 đạt được khi x=1; y=-4/5
đoạn sau thêm tham số để làm thì làm sao để tìm được tham số đó ạ, em cũng làm đến đó nhưng không tìm được tham số phù hợp
UCT mở rộng: ta sẽ đi tìm m;n sao cho: \(\frac{5b^3-a^3}{ab+3b^2}\le ma+nb\)
\(\Leftrightarrow a^3+ma^2b+\left(3m+n\right)ab^2+\left(3n-5\right)b^3\ge0\) (1)
\(\Leftrightarrow x^3+m.x^2+\left(3m+n\right)x+\left(3n-5\right)\ge0\) với \(x=\frac{a}{b}\)
Dự đoán rằng sẽ phân tích về dạng \(\left(a-b\right)^2.P\left(a;b\right)\) hay \(\left(x-1\right)^2P\left(x\right)\)
Do đó (1) phải có nghiệm \(x=1\)
\(\Rightarrow4m+4n-4=0\Rightarrow n=1-m\)
Thay vào: \(x^3+mx^2+\left(2m+1\right)x-3m-2\ge0\)
Hoocne hạ bậc: \(\left(x-1\right)\left(x^2+\left(m+1\right)x+3m+2\right)\ge0\)
\(\Rightarrow x^2+\left(m+1\right)x+3m+2\) cũng có 1 nghiệm \(x=1\)
\(\Rightarrow4m+4=0\Rightarrow m=-1\Rightarrow n=2\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)
\(=20x^6-8x^3+40x^3y+25y^2-5\)
\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)
\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)
Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)
\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)
\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)