K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(A=5-x^2+2x-4y^2-4y\)

\(\Rightarrow-A=-5+x^2-2x+4y^2+4y\)

\(\Rightarrow-A=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(\Rightarrow-A=\left(x-1\right)^2+\left(2y+1\right)^2-7\)

Vay \(A_{max}=7\Leftrightarrow x=1;y=-\frac{1}{2}\)

8 tháng 8 2015

A=\(-x^2+2xy-4y^2+2x+8y-8=-\left(x^2-2xy+y^2-2x+1+2y\right)-\left(3y^2-6y+3\right)-4=-4-\left(x-y-1\right)^2-3\left(y-1\right)^2\le-4\)

=>Max A=-4<=>(x-y-1)2=0 và (y-1)2=0<=>x=2 y=1

31 tháng 8 2015

A = - x^2 + 2x - 1 - 4y^2 - 4y - 1 + 7 

   = - ( x^2 - 2x + 1 ) - ( 4y^2 + 4y + 1 ) + 7

   = - (x - 1 )^2 - (2y + 1 )^2 + 7 

Vậy GTLN của A là 7 khi x - 1 = 0 và  2y + 1 = 0 

=> x = 1 và y = -1/2

31 tháng 8 2015

thang Tran : sướng v~~~~~~

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

NV
5 tháng 4 2019

a/ \(x+4y=1\Rightarrow x=1-4y\)

\(A=x^2+4y^2=\left(1-4y\right)^2+4y^2=20y^2-8y+1\)

\(A=20\left(y^2-2.\frac{1}{5}y+\frac{1}{25}\right)+\frac{1}{5}=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

\(\Rightarrow A_{min}=\frac{1}{5}\) khi \(\left\{{}\begin{matrix}y=\frac{1}{5}\\x=1-4y=\frac{1}{5}\end{matrix}\right.\)

b/

\(B=\frac{2x^2+5x+8}{x}=2x+\frac{8}{x}+5\ge2\sqrt{2x.\frac{8}{x}}+5=13\)

\(\Rightarrow B_{min}=13\) khi \(x=2\)

5 tháng 4 2019

Bạn giúp mình nốt câu c và cau d nha:'<

c) C= (2x2 +6x+10)/(x2+3x+3)

d) D= 4x2 +4x +2/x +15; x>0

8 tháng 8 2016

\(C=x^2+y^2-3x+4y+5\)

\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(y+2\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)

2 tháng 3 2019

Cách 2 nha

\(M=-x^2+xy-y^2-2x+4y+11\)

\(\Rightarrow4M=-4x^2+4xy-4y^2-8x+16y+44\)

\(=-\left(4x^2-4xy+y^2\right)-4\left(2x-y\right)-4-3\left(y^2-4y+4\right)+60\)

\(=-\left(2x-y\right)^2-4\left(2x-y\right)-4-3\left(y-2\right)^2+60\)

\(=-\left(2x-y+2\right)^2-3\left(y-2\right)^2+60\le60\forall x;y\)

\(\Rightarrow M\le15\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+2=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy ...

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:
PT \(\Leftrightarrow M+x^2-xy+y^2+2x-4y-11=0\)

\(\Leftrightarrow x^2+x(2-y)+(y^2-4y-11+M)=0(*)\)

Coi đây là pt bậc 2 ẩn $x$. Dấu "=" tồn tại đồng nghĩa với việc PT $(*)$ luôn có nghiệm

\(\Rightarrow \Delta=(2-y)^2-4(y^2-4y-11+M)\ge 0\)

\(\Leftrightarrow -3y^2+12y+48\geq 4M\)

\(-3y^2+12y+48=60-3(y-2)^2\leq 60\)

\(\Rightarrow 4M\leq -3y^2+12y+48\leq 60\Rightarrow M\leq 15\)

Dấu "=" xảy ra khi $y=2; x=0$

Vậy \(M_{\max}=15\)

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..