Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)
<=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)
<=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)
Vậy M=1
^_^
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
\(\left(y-2\right)x^2+1=y^2\Leftrightarrow\left(y-2\right)x^2=\left(y-1\right)\left(y+1\right)\)
- \(y=2\)không thỏa.
- \(y\ne2\): \(x^2=\frac{\left(y-1\right)\left(y+1\right)}{y-2}\)
Nếu \(y=1\Rightarrow x=0\).
Nếu \(y\ne1\)suy ra \(\left(y-1,y-2\right)=1\Rightarrow\left(y+1\right)⋮\left(y-2\right)\)
\(\Rightarrow3⋮\left(y-2\right)\Rightarrow y-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow y\in\left\{-1,3,5\right\}\)(do \(y\ne1\))
Ta chỉ có cặp \(\left(x,y\right)\in\left\{\left(0,-1\right)\right\}\)thỏa.