K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

DD
16 tháng 5 2021

\(\left(y-2\right)x^2+1=y^2\Leftrightarrow\left(y-2\right)x^2=\left(y-1\right)\left(y+1\right)\)

\(y=2\)không thỏa. 

\(y\ne2\)\(x^2=\frac{\left(y-1\right)\left(y+1\right)}{y-2}\)

Nếu \(y=1\Rightarrow x=0\).

Nếu \(y\ne1\)suy ra \(\left(y-1,y-2\right)=1\Rightarrow\left(y+1\right)⋮\left(y-2\right)\)

\(\Rightarrow3⋮\left(y-2\right)\Rightarrow y-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

\(\Rightarrow y\in\left\{-1,3,5\right\}\)(do \(y\ne1\))

Ta chỉ có cặp \(\left(x,y\right)\in\left\{\left(0,-1\right)\right\}\)thỏa. 

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

\(A=\left(1+\frac{x^2}{y^2}\right)\left(1+\frac{y^2}{x^2}\right)\ge2\sqrt{\frac{x^2}{y^2}}.2\sqrt{\frac{y^2}{x^2}}=2.\frac{x}{y}.2.\frac{y}{x}=4\) ( Cosi ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

... 

9 tháng 7 2020

xin chào bạn khỏe không mình đang tập nói tiếng việt

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...

4 tháng 9 2016

Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ

Tương tự: y, z cũng là số lẻ

Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)

Nên : x3 + xyz là số chẵn ( trái với đề bài)

Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên