Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
\(A=\sqrt{\left(x-4\right)^2+4}-12\ge\sqrt{4}-12=-10\)
\(\Rightarrow A_{min}=-10\) khi \(x=4\)
\(B=2\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}\ge2\sqrt{\frac{11}{4}}=\sqrt{11}\)
\(B_{min}=\sqrt{11}\) khi \(x=-\frac{3}{2}\)
\(C=\frac{3}{1+\sqrt{9-\left(x-1\right)^2}}\ge\frac{3}{1+\sqrt{9}}=\frac{3}{4}\) (để chặt chẽ thì cần tìm ĐKXĐ cho căn thức trước, bạn tự tìm)
Bài 2:
\(A=\sqrt{7-2x^2}\le\sqrt{7}\)
\(A_{max}=\sqrt{7}\) khi \(x=0\)
\(B=\sqrt{7-\left(2x+1\right)^2}+5\le\sqrt{7}+5\) (cần ĐKXĐ)
\(B_{max}=\sqrt{7}+5\) khi \(x=-\frac{1}{2}\)
\(C=7+\sqrt{1-\left(2x-1\right)^2}\le7+\sqrt{1}=8\) (cần tìm ĐKXĐ)
\(C_{max}=8\) khi \(x=\frac{1}{2}\)
\(A=\sqrt{\left(x-3\right)-2\sqrt{x-3}+1+2}=\sqrt{\left[\left(x-3\right)-1\right]^2+2}\)
\(=\sqrt{\left(x-4\right)^2+2}\ge\sqrt{2}\)
GTNN CỦA A=CĂN 2 TẠI X=4
\(B=2.\sqrt{x^2+3x+\frac{9}{4}+\frac{11}{4}}=2.\sqrt{\left(x+\frac{3}{2}\right)^2+\frac{11}{4}}=\sqrt{4.\left(x+\frac{3}{2}\right)^2+11}\ge\sqrt{11}\)
GTNN CỦA B=CĂN 11 TẠI X=-3/2
bài 2
\(A=\sqrt{-2x^2+7}\le\sqrt{7}\)
GTLN CỦA A=CĂN 7 TẠI X=0
\(B=1+\sqrt{-\left(x^2-6x+7\right)}=1+\sqrt{-\left(x-3\right)^2+2}\)
để B lớn nhất thì \(\sqrt{-\left(x-3\right)^2+2}\) lớn nhất
mà\(\sqrt{-\left(x-3\right)^2+2}\le2\)
=> GTLN CỦA B=1+2 =3 TẠI X=3
\(C=7+\sqrt{-4\left(x^2-x\right)}=7+\sqrt{-4\left(x-\frac{1}{2}\right)^2+1}\le7+1=8\)
GTLN là 8 tại x=1/2
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
\(A=3+\sqrt{2\left(x-1\right)^2+1}\ge3+\sqrt{1}=4\)
\(A_{min}=4\) khi \(x=1\)
\(B=\sqrt{\left(x-4\right)^2+2}-12\ge\sqrt{2}-12\)
\(B_{min}=\sqrt{2}-12\) khi \(x=4\)
\(C=\sqrt{\left(2x-1\right)^2+4}+1\ge\sqrt{4}+1=3\)
\(C_{min}=3\) khi \(x=\frac{1}{2}\)
\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)
Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no
(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))
=> x - 2 = 0
<=> x = 2 (nhận)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)
TH1:
x + 3 = 0
<=> x = - 3 (loại)
TH2:
\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)
\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)
\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)
\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)
Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no
=> x - 2 = 0
<=> x = 2 (nhận)
~ ~ ~
Vậy x = 2