K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Có H = x+ 5y2 + 4xy - 6x + 5y - 9

         = [(x2 + 4xy + 4y2) - 6x - 12y + 9] + (y2 + 17y + \(\frac{289}{4}\)) - \(\frac{361}{4}\)

         = [(x + 2y)2 - 2(x + 2y).3 + 32] + (y2 + 2.y.\(\frac{17}{2}\)\(\left(\frac{17}{2}\right)^2\)) - \(\frac{361}{4}\)

         = (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\)

Thấy (x + 2y - 3)2 ≥ 0 với mọi x; y

         \(\left(y+\frac{17}{2}\right)^2\ge0\) với mọi y

=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) ≥ 0 với mọi x; y

=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\) ≥ \(\frac{-361}{4}\) với mọi x; y

=> H ≥ \(\frac{-361}{4}\) với mọi x; y

Dấu "=" xảy ra khi ...

Bn tự giải tiếp.

P/s: ko chắc đúng

13 tháng 12 2019

\(N=x^2+5y^2-4xy+6x-14y+15=x^2-4xy+4y^2+6x-12y+9+y^2-2y+1+5\)

\(=\left(x^2-4xy+4y^2\right)+\left(6x-12y\right)+9+\left(y^2-2y+1\right)+5\)

\(=\left[x^2-2.x.2y+\left(2y\right)^2\right]+6\left(x-2y\right)+9+\left(y^2-2.y.1+1^2\right)+5\)

\(=\left(x-2y\right)^2+6\left(x-2y\right)+9+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+6\left(x-2y\right)+9\right]+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y-1\right)^2+5=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\)

\(\Rightarrow GTNN\)của biểu thức N là 5.

Dấu\("="\)xảy ra\(\Leftrightarrow x-2y+3=0\)\(y-1=0\Leftrightarrow x-2y=-3\)\(y=1\).

\(\Leftrightarrow x-2.1=-3\)\(y=1\Leftrightarrow x=-3+2=-1\)\(y=1\).

Vậy\(GTNN\)của biểu thức N là 5 tại\(x=-1\)\(y=1\).

13 tháng 12 2019

\(N = x^2+5y^2-4xy+6x-14y+15\)

\(N= [ ( x^2 - 4xy + 4y^2) + ( 6x - 12y) + 9 ]\)\(+ ( y^2 - 2y + 1 ) + 5\)\(N = [( x - 2y )^2 + 6( x - 2y ) + 9 ] + \)\(( y - 1 )^2 + 5\)\(N = ( x - 2y + 3 )^2 + ( y - 1 )^2 +5\)\(\ge\)\(5\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\)\(x - 2y + 3 = 0 \) \(và \) \(y - 1 = 0\)

\(\Rightarrow\)\(x - 2y + 3 = 0 \) \(và\) \(y = 1\)

\(\Rightarrow\)\(x = - 1\) \(và \) \(y = 1\)

\(Min N = 5 \)\(\Leftrightarrow\)\(x = - 1\) \(và \) \(y = 1\)

12 tháng 10 2017

\(x^2-6x+11=x^2-2\times3\times x+3^2+2=\left(x-3\right)^2+2\)

vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)

vậy MIN = 2  . dấu = xảy ra <=> x = 3

12 tháng 10 2017

\(x^2-20x+101=x^2-2\cdot10\cdot x+10^2+1=\left(x-10\right)^2+1\)

\(\left(x-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+1\ge1\)

vậy Min = 1  . dấu = xảy ra <=> x = 10

27 tháng 11 2017

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

27 tháng 11 2017

làm nốt hộ mình con C đi

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

31 tháng 10 2017

a, Ta có :\(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)do (x-3)^2\(\ge0\)

"Dấu = xảy ra \(\Leftrightarrow x=3\)

Vậy Min A=2 khi x=3

b, Tương tự

31 tháng 12 2016

a) k^2+5-1/4

=> A >=19/4 khi k=0

k=0 thì không thể có chi tiết

29 tháng 6 2016

Thiếu đề bn ơi

29 tháng 6 2016

Ta có:

\(5M=25y^2-20xy+5x^2+10x\)

\(5M=\left(5y\right)^2-2\cdot5y\cdot2x+\left(2x\right)^2+x^2+2x\cdot5+25-25\)

\(5M=\left(5y-2x\right)^2+\left(x+5\right)^2-25\ge-25\forall x;y\)

Vậy GTNN của 5M = -25 khi x = -5 và y = -2

hay GTNN của M = -5 khi x = -5 và y = -2.

20 tháng 12 2016

Bạn xem lại xem có dấu gì ở giữa 10x và 22y không