Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\\ =\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|+\left|2018-x\right|\\ \ge\left|x-2015+2017-x\right|+\left|x-2016+2018-x\right|\\ =2+2\\ =4\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-2015\right)\left(2017-x\right)\ge0\\\left(x-2016\right)\left(2018-x\right)\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2015\le x\le2017\\2016\le x\le2018\end{matrix}\right.\\ \Leftrightarrow2016\le x\le2017\)
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
A = | x - 2015 | +| x - 2016 |
A = | x - 2015 | + | 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)1
Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0
\(\Rightarrow\)x = 2015 hoặc x = 2016
Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016
\(\left|x-2016\right|+2017\)
giá tị nhỏ nhất là 2017 vì \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0
mà ở ngoài lại là +2017 nên biểu thức có giá trj = 0 suy ra 0+2017 =2017
biểu thức tiếp
= 2018
a/A=|x-2017|+|x-2018|
=|x-2017|+|2018-x|
=>Alớn hơn hoặc bằng |x-2017+2018-x|=1
Dấu = xảy ra khi:(x-2017+2018-x) lớn hơn hoặc bằng 0
Vậy GTNN của A=1khi 2017 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2018