Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho x y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10
B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10
B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5
B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)5 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy MinB = 5 <=> x = 1 và y = 2
\(A=x^2+2y^2-2xy+4x-2y+12\)
\(A=\left(x^2-2xy+y^2\right)+y^2+4x-2y+12\)
\(A=\left[\left(x-y\right)^2+2\left(x-y\right).2+4\right]+\left(y^2+2y+1\right)+7\)
\(A=\left(x-y+2\right)^2+\left(y+1\right)^2+7\)
Mà \(\left(x-y+2\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow A\ge7\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y+2=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)
Vậy \(A_{Min}=7\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)
\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)
\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(H=x^2+2y^2-2xy+6y+2023\\=(x^2-2xy+y^2)+(y^2+6y+9)+2014\\=(x-y)^2+(y^2+2\cdot y\cdot3+3^2)+2014\\=(x-y)^2+(y+3)^2+2014\)
Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+3\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+3\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left(x-y\right)^2+\left(y+3\right)^2+2014\ge2014\forall x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow x=y=-3\)
Vậy \(Min_H=2014\) khi \(x=y=-3\)
\(H=x^2+2y^2-2xy+6y+2023\)
\(2H=2x^2+4y^2-4xy+12y+4046\)
\(2H=4y^2-4y\left(x-3\right)+\left(x-3\right)^2-\left(x-3\right)^2+2x^2+4046\)
\(2H=\left(2y-x+3\right)^2+x^2+6x+9+4028\)
\(H=\dfrac{1}{2}\left[\left(2y-x+3\right)^2+\left(x+3\right)^2\right]+2014\)
Vì \(\left(2y-x+3\right)^2+\left(x+3\right)^2\ge0\forall x,y\)
\(MinH=2014\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3\end{matrix}\right.\)
<=> x^2 + 2x(y+2) + y^2+4y+4+y^2+2y+1-4
<=> x^2 + 2x(y+2) + (y+2)^2 + (y+1)^2 - 4
<=> (x+y+2)^2 + (y+1)^2 - 4 >= -4
min = -4 khi y = -1 , x = -1
\(=\left(x+y+2\right)^2+\left(y+1\right)^2-4\)
Vì \(\left(x+y+2\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2-4\ge-4\forall x\)
Vậy GTNN của A=-4 Dấu bằng xảy ra khi
\(\Rightarrow\hept{\begin{cases}\left(x+y+2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2-y\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)
Vậy GTNN của A=-4 khi và chỉ khi x=-3 , y=-1