Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại đề bài, sao có cả \(-2y^2\) và \(6y^2\) thế kia? Ko ai cho đề như vậy cả
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho x y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
\(N=2013-\left(x^2+2xy+y^2\right)-\left(y^2-6x+9\right)\)
\(N=2013-\left(x+y\right)^2-\left(y-3\right)^2\le2013-0-0=2013\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}y-3=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3\\x+3=0\end{cases}}\Leftrightarrow x=-3;y=3\)
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
\(x^2+y^2+9+2xy+6x+6y+y^2-1=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2-1=0\Leftrightarrow\left(x+y+3\right)^2=1-y^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+2016\le1+2013\)
\(\Rightarrow2012\le B\le2014\)
\(\Rightarrow B_{min}=2012\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-4\end{matrix}\right.\)
\(B_{max}=2014\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)