Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
Tìm giá trị nhỏ nhất
A=|x-2019|+|x-1|
B=|1+ x2|+2019
HELP ME!!!!!!LÀM ĐÚNG MK CHO 5 K, MAI NỘP RỒI T-T
a) Ta có:A=|x-2019| +|x-1|
=|2019-x| +|x-1|
≥|2019-x+x-1|=|2018|=2018
Dấu "=" xảy ra <=> (2019-x)(x-1) ≥0 <=> 1≤x≤2019
b)Ta có:1+x2 ≥0 với mọi x
=> |1+x2| = 1+x2
Do đó: B=|1+x2|+2019 =x2+2020 ≥2020
Dấu "=" xảy ra <=> x=0
Nhớ k mik nha :))))
Vì \(\left(x-9\right)^2\ge0\forall x;\left|2x-y-2\right|\ge0\forall x;y\). Nên \(A\ge10\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-9\right)^2=0\\\left|2x-y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-9=0\\2x-y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=16\end{cases}}\)
Vậy MinA = 10 <=> x = 9, y = 16
\(A\left(x\right)=4x^2+6x+15\)
\(=4x^2+6x+\dfrac{9}{4}+\dfrac{51}{4}\)
\(=4\left(x^2+\dfrac{3x}{2}+\dfrac{9}{16}\right)+\dfrac{51}{4}\)
\(=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\)
Dễ thấy: \(\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)
\(\Rightarrow A\left(x\right)=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\ge\dfrac{51}{4}\forall x\)
Đẳng thức xảy ra khi \(4\left(x+\dfrac{3}{4}\right)^2=0\Rightarrow x=-\dfrac{3}{4}\)
tìm GTNN mà, đâu phải tìm x