K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

\(A\left(x\right)=4x^2+6x+15\)

\(=4x^2+6x+\dfrac{9}{4}+\dfrac{51}{4}\)

\(=4\left(x^2+\dfrac{3x}{2}+\dfrac{9}{16}\right)+\dfrac{51}{4}\)

\(=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\)

Dễ thấy: \(\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\dfrac{3}{4}\right)^2\ge0\forall x\)

\(\Rightarrow A\left(x\right)=4\left(x+\dfrac{3}{4}\right)^2+\dfrac{51}{4}\ge\dfrac{51}{4}\forall x\)

Đẳng thức xảy ra khi \(4\left(x+\dfrac{3}{4}\right)^2=0\Rightarrow x=-\dfrac{3}{4}\)

15 tháng 4 2017

tìm GTNN mà, đâu phải tìm x

29 tháng 7 2019

a) Ta có: 2|x + 2| \(\ge\)\(\forall\)x

=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x

Hay A \(\ge\)15 \(\forall\)x

Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2

Vậy Min A = 15 tại x = -2

b) Ta có: 2(x + 5)4 \(\ge\)\(\forall\)x

         3|x + y + 2| \(\ge\)\(\forall\)x;y

=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y

Hay B \(\le\)20 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)

Vậy Max B = 20 tại x = -5 và y = 3

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

29 tháng 9 2019

a) Ta có:A=|x-2019| +|x-1|
 =|2019-x| +|x-1|
 ≥|2019-x+x-1|=|2018|=2018
Dấu "=" xảy ra <=> (2019-x)(x-1) ≥0 <=> 1≤x≤2019
b)Ta có:1+x2 ≥0 với mọi x
=> |1+x2| = 1+x2
Do đó: B=|1+x2|+2019 =x2+2020 ≥2020
Dấu "=" xảy ra <=> x=0
Nhớ k mik nha :))))

29 tháng 9 2019

A thì kẻ bảng

B=/1+x^2/+2019

      /1+x^2/> hoặc = 0

        /1+x^2/+2019> hoặc =2019

   hay             B> hoặc =2019    

do đó GTNN B=2019                       

     

5 tháng 3 2018

A = (x - 2)2 + 3

Ta có \(\left(x-2\right)^2\ge0\) với mọi giá trị của x

=> \(\left(x-2\right)^2+3\ge3\)với mọi gt của x

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2=0\)

=> x - 2 = 0 => x = 2

18 tháng 4 2018

P(x)-Q(x)= 4x3-9x2+5x

22 tháng 3 2019

Vì \(\left(x-9\right)^2\ge0\forall x;\left|2x-y-2\right|\ge0\forall x;y\). Nên \(A\ge10\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-9\right)^2=0\\\left|2x-y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-9=0\\2x-y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=16\end{cases}}\)

Vậy MinA = 10 <=> x = 9, y = 16

22 tháng 3 2019

cho mk hỏi 

  • Huyền Nhi chữ A viết ngược là gì