Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị nhỏ nhất;
a, A= |x + 1| +5
b, B =(x - 1)2 +|y - 3| +2
HELP ME !!! AI LÀM NHANH TUI TICK CHO
A, A=!x+1!+5
=>A=5 khi x=-1
B, B=\(\left(x-1\right)^2+!y-3!+2\)
B=2 khi x=1 và y=3
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
\(A=\left|x-2018\right|+\left|x+2019\right|\)
\(A=\left|2018-x\right|+\left|x+2019\right|\)
\(A\ge\left|2018-x+x+2019\right|=\left|4037\right|=4037\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2018-x\ge0\\x+2019\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2018\\x\ge-2019\end{cases}\Leftrightarrow}-2019\le x\le2018}\)
Vậy.........
\(1,A=\left|x-2018\right|+\left|2019+x\right|\)
\(\Rightarrow A\ge\left|x-2018-\left(2019+x\right)\right|\)
\(\Rightarrow A\ge\left|x-2018-2019-x\right|\)
\(\Rightarrow A\ge\left|-2018-2019\right|\)
\(\Rightarrow A\ge\left|-4037\right|=4037\)
Vậy \(A_{min}=4037\)
A = ( x - 2 )2 + 2019
( x- 2 )2 \(\ge0\forall x\)
=> ( x - 2)2 + 2019 \(\ge2019\)
=> A \(\ge2019\)
Dấu " = " xảy ra <=> ( x - 2)2 =0
<=> x = 2
b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình
c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020
( 3-x )100 \(\ge0\forall x\)
=> - ( 3-x)100 \(\le0\forall x\)
Tương tự : - 3.( y+2)100 \(\le0\forall y\)
=> C \(\le2020\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
@Shadow@ Đề câu b) đúng rồi đó
\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)
ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)
=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
\(A=\left(x-2\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi x=2
\(B=\left(2x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=1/2
\(D=\left(x^2-9\right)^4+\left|y-2\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x^2-9=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;2\right);\left(3;2\right)\right\}\)
a) Ta có:A=|x-2019| +|x-1|
=|2019-x| +|x-1|
≥|2019-x+x-1|=|2018|=2018
Dấu "=" xảy ra <=> (2019-x)(x-1) ≥0 <=> 1≤x≤2019
b)Ta có:1+x2 ≥0 với mọi x
=> |1+x2| = 1+x2
Do đó: B=|1+x2|+2019 =x2+2020 ≥2020
Dấu "=" xảy ra <=> x=0
Nhớ k mik nha :))))
A thì kẻ bảng
B=/1+x^2/+2019
/1+x^2/> hoặc = 0
/1+x^2/+2019> hoặc =2019
hay B> hoặc =2019
do đó GTNN B=2019