\(A=\left(x+5\right)^2+3\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

a ) Vì \(\left(x+5\right)^2\ge0\) \(\forall\)  \(x\)

\(\Rightarrow A=\left(x+5\right)^2+3\ge3\)

Dấu "=" xảy ra <=> \(\left(x+5\right)^2=0\Rightarrow x=-5\)

Vậy gtnn của A là 3 tại x = - 5

b ) Vì \(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\sqrt{x}\ge0\)

\(\Rightarrow B=x+\sqrt{x}-5\ge-5\)

Dấu "=" xảy ra <=> x = 0

Vậy gtnn của B là - 5 tại x = 0

c ) Vì \(x^4\ge0\) \(\forall\) \(x\)

\(\Rightarrow x^4+4\ge4\)

\(\Rightarrow C=\left(x^4+4\right)^4\ge4^4=256\)

Dấu "=" xảy ra <=> x = 0

Vậy gtnn của C là 256 tại x = 0

17 tháng 2 2017

a ) =3/10

b)-2

c) 0

(mk lm rùi)

6 tháng 9 2017

a) \(A=x^4+3x^2+2\)

Ta có: \(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)

\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) <=> Có GTNN là 2 khi x = 0

Vậy AMin = 2 tại x = 0

b) \(B=\left(x^4+5\right)^2\)

Ta có : \(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)

\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) <=> Có GTNN là 25 tại x = 0

Vậy BMin = 25 tại x = 0

\(C=\left(x-1\right)^2+\left(y+2\right)^2\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall x\end{cases}}\) nên \(C=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) <=> Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy CMin = 0 tại x=1;y=-2

6 tháng 9 2017

a, Vì \(x^4\ge0;3x^2\ge0\)

=> \(x^4+3x^2\ge0\)

=> \(A=x^4+3x^2+2\ge2\)

Dấu "=" xảy ra khi x=0

Vậy MinA = 2 khi x=0

b, Vì \(x^4\ge0\Rightarrow x^4+5\ge5\Rightarrow B=\left(x^4+5\right)^2\ge25\)

Dấu "=" xảy ra khi x = 0

Vậy MInB = 25 khi x=0

c, Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow C=\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy MinC = 0 khi x = 1,y = -2

19 tháng 2 2017

a.

Ta có:

x - 2 \(\ge\)2

=> 5 - (x - 2) \(\ge\)5

=> GTLN của biểu thức là 5, dấu bằng xảy ra khi

(x - 2)2 = 0

=> x - 2 = 0

=> x = 2

b, c tương tự

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

19 tháng 11 2022

a: \(A=\left|x-\dfrac{7}{4}\right|+\dfrac{8}{5}>=\dfrac{8}{5}\)

Dấu = xảy ra khi x=7/4

b: \(B=\left|5-x\right|+\left|x+\dfrac{3}{4}\right|>=\left|5-x+x+\dfrac{3}{4}\right|=\dfrac{23}{4}\)

Dấu = xảy ra khi (x-5)(x+3/4)<=0

=>-3/4<=x<=5

15 tháng 6 2016

a,Ta có:

\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)

b,Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)

15 tháng 6 2016

Câu C sai đề

A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra khi: x=7/12

Vậy GTNN của A là 2004 tại x=7/12

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak