Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)
\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)
\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x\in\left\{0;-5\right\}\)
\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)
Đặt \(x^2-9x+14=a\)
\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)
\(=a^2-36+2018=a^2+1982\)
\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)
\(\Rightarrow x^2-9x+14=0\)
\(\Rightarrow x^2-2x-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Rightarrow x\in\left\{2;7\right\}\)
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
Ta có |x-10| > hoặc = 0
=> |x-10|+ 2021 > hoặc = 2021
Dấu "=" xảy ra khi x-10 = 0
=> x-10 = 0
=> x=10
Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10
Ta có : |x-10| > 0 => |x-10| + 2021 > 0 + 2021
A > 2021
Dấu"=" xảy ra khi x - 10 = 0 => x =10
Vậy Amin=2021 khi x = 10
a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)
b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)
\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)
Mình cảm ơn ạ