K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

\(ĐK:x\ge0\)

\(y=x-4\sqrt{x}-1=\left(\sqrt{x}\right)^2-4\sqrt{x}+4-5=\left(\sqrt{x}-2\right)^2-5\ge-5\)

Đẳng thức xảy ra khi x = 4

20 tháng 10 2020

ĐKXĐ : \(x\ge0\)

Ta có :

\(y=x-4\sqrt{x}-1\)

\(\Leftrightarrow y=x-2.2\sqrt{x}+4-5\)

\(\Leftrightarrow y=\left(\sqrt{x}-2\right)^2-5\ge-5\)

Dấu bằng xảy ra

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)

Vậy giá trị nhỏ nhất của biểu thức y = -5 \(\Leftrightarrow x=4\)

16 tháng 11 2019

\(x^2+x\sqrt{3}+1\)

\(=x^2+2.x.\frac{\sqrt{3}}{2}+\left(\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

\(=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{\sqrt{3}}{2}\)

17 tháng 11 2019

Đặt \(A=x^2+x\sqrt{3}+1\)

\(\Rightarrow A=x^2+x\sqrt{3}+\frac{3}{4}+\frac{1}{4}\)

\(\Rightarrow A=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\forall x\Rightarrow\)\(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Vậy \(A_{min}=\frac{1}{4}\Leftrightarrow x+\frac{\sqrt{3}}{2}=0\Leftrightarrow x=-\frac{\sqrt{3}}{2}\)

23 tháng 7 2017

Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi