K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

\(x^2+x\sqrt{3}+1\)

\(=x^2+2.x.\frac{\sqrt{3}}{2}+\left(\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

\(=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{\sqrt{3}}{2}\)

17 tháng 11 2019

Đặt \(A=x^2+x\sqrt{3}+1\)

\(\Rightarrow A=x^2+x\sqrt{3}+\frac{3}{4}+\frac{1}{4}\)

\(\Rightarrow A=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\forall x\Rightarrow\)\(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)

Vậy \(A_{min}=\frac{1}{4}\Leftrightarrow x+\frac{\sqrt{3}}{2}=0\Leftrightarrow x=-\frac{\sqrt{3}}{2}\)

23 tháng 7 2017

Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi

13 tháng 9 2017

\(A=\frac{\sqrt{x}-13}{\sqrt{x}+3}=\frac{-\frac{13}{3}\sqrt{x}-13+\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}=\frac{-\frac{13}{3}\left(\sqrt{x}+3\right)+\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}\)

\(=-\frac{13}{3}+\frac{\frac{16}{3}\sqrt{x}}{\sqrt{x}+3}=-\frac{13}{3}+\frac{16\sqrt{x}}{3\sqrt{x}+9}\ge-\frac{13}{3}\)có GTNN là \(-\frac{13}{3}\)

7 tháng 6 2016

\(A=\left(x-2\sqrt{xy}+y\right)\)\(-\left(2\sqrt{x}-2\sqrt{y}\right)\)\(+1\)\(+\left(2y-2\sqrt{y}+\frac{1}{2}\right)\)\(-\frac{1}{2}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)\)\(+1\)\(+2\left(y-\sqrt{y}+\frac{1}{4}\right)+\frac{1}{2}\)
 

\(\left(\sqrt{x}-\sqrt{y}-1\right)^2\)\(+2\left(\sqrt{y}-\frac{1}{2}\right)^2+\frac{1}{2}\)lớn hơn hoặc bằng \(\frac{1}{2}\)

A min \(=\frac{1}{2}\)<=>\(\left(\sqrt{x}-\sqrt{y}-1\right)^2\)=0, \(\left(\sqrt{y}-\frac{1}{2}\right)^2=0\)<=> \(x=\frac{9}{4};y=\frac{1}{4}\).