Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: với n<2018 ta có :
\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)
=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên
TH2 : với \(n\ge2018\)
=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)
Ta có : Vế trái \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2
Mà Vế phải 2(n-2018) luôn chia hết cho 2
=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại
\(M=\left|3x+1\right|+3x-49\)
\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)
\(M\ge-50\)
\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)
\(N\ge7-x+x-20=-13\)
\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)
\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)
\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)
\(a)2018=\left|x-2016\right|+\left|x-2014\right|\)
\(\Rightarrow\hept{\begin{cases}x-2016+x-2014=2018\\x-2016+x-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-2016-2014=2018\\2x-2016-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=2018+2016+2014\\2x=-2018+2016+2014\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=6048\\2x=2012\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3024\\x=1006\end{cases}}\)
vậy x = 3024 hoặc x = 1006
b) \(\left(x-3\right)^x-\left(x-3\right)^{x+2}=0\)
\(\Rightarrow\left(x-3\right)^x-\left(x-3\right)^x\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)^x\left[1-\left(x-3\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^x=0\\1-\left(x-3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x-3=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}\)
vậy x = 3 hoặc x = 4
Cop thì ghi cái nguồn ra không thì đưa cái link cho người ta.
Nguồn: Câu hỏi của Tran Thi Minh Thu - Toán lớp 7 | Học trực tuyến
a, Thay x = -2017 vào biểu thức, ta đc
A=|-2017 + 2018| - 107
A=|1| - 107
A=1 - 107
A= -106
Vậy A = -106
b, Ta có:
|x + 2018| - 107 = |-107|
|x + 2018| - 107 = 107
|x + 2018| = 107 + 107
|x + 2018| = 214
Suy ra x + 2018 = 214 hoặc x + 2018 = -214
--Nếu x + 2018 = 214
x = 214 - 2018
x = -1804
--Nếu x + 2018 = -214
x = -214 - 2018
x = -2232
Vậy x = -1804; x = -2232
Chúc bạn học tốt
\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)
\(\Leftrightarrow\)\(\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{2017.2018}=\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{\left(x-2017\right)\left(x-2018\right)}\)
Do \(2017\left(x-2017\right)-2018\left(x-2018\right)\ne0\) nên \(\left(x-2017\right)\left(x-2018\right)=2017.2018\)
\(\Leftrightarrow\)\(x^2-4035x+2017.2018=2017.2018\)
\(\Leftrightarrow\)\(x\left(x-4035\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=4035\left(n\right)\end{cases}}\)
Vậy x = 4035
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
thanks bn nha