Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)
\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)
\(\Rightarrow\)\(2017\le x\le2019\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại )
Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)
Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) )
Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)
Chúc bạn học tốt ~
Đặt biểu thức là A
+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2
+, Nếu n lẻ
(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2
Với mọi n thuộc N thì A chia hết cho 2
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
a, n-4 chia hết cho n-1
Vì n-1 \(_⋮\)n-1 nên 3\(_⋮\)n-1
\(\Rightarrow\)n-1 \(_{\in}\)Ư(3)
Ư(3)={1;-1;3;-3}n-1 | -1 | -3 | 1 | 3 |
n | 0 | -2 | 2 | 4 |
Vậy n\(_{\in}\){0;2;-2;4}
b, n-2 chia hết cho n+1
Ta có: n-2=n+1-3
\(\Rightarrow\)n-1+3\(_⋮\)n+1
\(\Rightarrow\)3\(_⋮\)n+1
\(\Rightarrow\)n+1\(_{\in}\)Ư(3)
Ư(3)={1;-1;3;-3}
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy n\(_{\in}\){0;-2;2;-4}
TH1: với n<2018 ta có :
\(2^m+2017=-\left(n-2018\right)+\left(n-2018\right)=0\)
=> Không thể xảy ra vì \(2^m+2017>0\) Vì m là số tự nhiên
TH2 : với \(n\ge2018\)
=> \(2^m+2017=n-2018+n-2018=2\left(n-2018\right)\)
Ta có : Vế trái \(2^m+2017\) là số tựi nhiên lẻ => ko chia hết cho 2
Mà Vế phải 2(n-2018) luôn chia hết cho 2
=> Vô lí . Vậy pt vô nghiệm và m,n ko tồn tại
thanks bn nha