Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai bạn Misaki và Ngọc Ánh lập luận sai sai ở đoạn 3n+2 nhé
Bài này mình làm để bạn tham khảo , sai xót bỏ qua nhé
Ta có \(M=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để M có giá trị nhỏ nhất thì \(\frac{5}{3n+2}\)có giá trị lớn nhất
Khi đó 3n +2 có giá trị nhỏ nhất mà \(n\in Z\)nên 3n + 2 nhỏ nhất khi và chỉ khi \(3n+2=2\)
\(\Rightarrow n=0\)Nên \(M=\frac{6.0-1}{3.0+2}=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của M = -1/2 khi và chỉ khi n = 0
Ta có: \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n-2}.\)
Để A có giá trị nhỏ nhất ( n thuộc N ) thì \(\frac{5}{3n+2}\)đạt giá trị lớn nhất.
=> 3n + 2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhất
=> n = 0
học tốt ~~~
Để A là số nguyên
<=> 4n + 1 chia hết cho 2n + 3
<=> 4n + 6 - 5 chia hết cho 2n + 3
<=> 2(2n + 3) - 5 chia hết cho 2n + 3
<=> 5 chia hết cho 2n + 3
<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}
<=> n thuộc {-2 ; -1 ; -4 ; 1}
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
ta có M=\(\frac{20-7n}{5-2n}=>2M=\frac{40-14n}{5-2n}\left(=\right)2M=\frac{5+7.\left(5-2n\right)}{5-2n}\left(=\right)\frac{5}{5-2n}+7=>M=\frac{5}{10-4n}+\frac{7}{2}\)
Để M nhỏ nhất thì \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất
để \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất thì \(\frac{5}{10-4n}\)nhỏ nhất
xét 2 TH
TH1:10-4n>0=>\(\frac{5}{10-4n}\)>0
TH2 10-4<0=>\(\frac{5}{10-4n}< 0\)
để \(\frac{5}{10-4n}\)nhỏ nhất thì \(\frac{5}{10-4n}< 0\)mà n nguyên =>10-4n=-2(=)4n=12(=)n=3
=> M=\(\frac{5}{10-12}+\frac{7}{2}=\frac{-5}{2}+\frac{7}{2}=1\)
Vậy min(m)=1 khi n=3
Bài 1:
a) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
Vậy \(x\in\left\{3;-15\right\}\)
Các phần khác làm tương tự
Bài 2:
Ta có: \(-\left(x-1\right)^2\le0\)
\(\Rightarrow M=2012-\left(x-1\right)^2\le2012\)
Vậy \(MIN_M=2012\) khi \(x=1\)
Bài 3:
Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow N=\left|x-3\right|+10\ge10\)
Vậy \(MAX_M=10\) khi \(x=3\)
Bài 4:
Ta có: \(n-6⋮n-4\)
\(\Rightarrow\left(n-4\right)-2⋮n-4\)
\(\Rightarrow2⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;2;-2\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=2\\n-4=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=6\\n=2\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;6;2\right\}\)
Bài 5: Tương tự bài 4
Bài 1:
b)\(\left(x+15\right)\left(x-12\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+15=0\\x-12=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=-15\\x=12\end{matrix}\right.\)
c)\(\left(x-7\right)\left(x+19\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-7=0\\x+19=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
d)\(\left(x-11\right)\left(x+5\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
Bài 5:
\(\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\in Z\)
\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
Câu 1:
a) Để x+2020 là số nguyên âm lớn nhất thì x+2020=-1
hay x=-1-2020=-2021
Vậy: x=-2021 thì x+2020 là số nguyên âm lớn nhất
b) Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+15\ge15\forall x\)
Dấu '=' xảy ra khi |x|=0 hay x=0
Vậy: Giá trị nhỏ nhất của biểu thức M=|x|+15 là 15 khi x=0
d) Ta có: \(\left(x-11\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-11\right)^2-200\ge-200\forall x\)
Dấu '=' xảy ra khi \(\left(x-11\right)^2=0\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-11\right)^2-200\) là -200 khi x=11
e) Ta có: \(\left(x+81\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+81\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+81\right)^2+3456\le3456\forall x\)
Dấu '=' xảy ra khi \(\left(x+81\right)^2=0\Leftrightarrow x+81=0\Leftrightarrow x=-81\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(x+81\right)^2+3456\) là 3456 khi x=-81
Câu 2:
a) Ta có: x(x-2)=-1
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1