Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)
\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)
Áp dụng bđt AM - GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)
\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)
Cộng vế với vế ta được :
\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Đức Hùng hình như áp dụng sai ( ngược dấu ) BĐT Bunhiacopxki rồi
\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge2+2+2=6\)(BDT cô-si)
Dấu '=' xảy ra khi x=y=z=1 rồi thay vào tính dc P=3
\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\\z=\pm1\end{cases}}\)
=> \(P=x^{28}+y^{10}+z^{2017}=1+1+z^{2017}=2+z^{2017}\)
Với \(z=-1\Rightarrow P=1+1-1=1\)
Với \(z=1\Rightarrow P=1+1+1=3\)
1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)
\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)
2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)
Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được :
\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)
Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0
=> A = 1
Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1
\(H\ge\frac{\left(x+y\right)^2}{2xy\left(x+y^3\right)}+\frac{\left(y+z\right)^2}{2yz\left(y+z\right)}+\frac{\left(z+x\right)^2}{2zx\left(z+x\right)}=\frac{1}{2xy\left(x+y\right)}+\frac{1}{2yz\left(y+z\right)}+\frac{1}{2zx\left(z+x\right)}\)
\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)}\)
Ta chứng minh BĐT phụ sau:
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Vậy BĐT phụ được chứng minh
Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right)\); \(z^3+x^3\ge zx\left(z+x\right)\)
\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{x^3+y^3+y^3+z^3+z^3+x^3}=\frac{9}{4\left(x^3+y^3+z^3\right)}=\frac{9}{32}\)
\(H_{min}=\frac{9}{32}\) khi \(x=y=z=\frac{2\sqrt{3}}{3}\)
Ta có x,y,z là các số thực dương
Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)
\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)
\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)
\(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)
\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)
Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)
\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)
Dễ thấy \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)
Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)
Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)